Suppression of lung adenocarcinoma progression by Nkx2-1

被引:342
|
作者
Winslow, Monte M. [1 ,2 ]
Dayton, Talya L. [1 ]
Verhaak, Roel G. W. [3 ,4 ]
Kim-Kiselak, Caroline [1 ,2 ]
Snyder, Eric L. [1 ]
Feldser, David M. [1 ]
Hubbard, Diana D. [3 ,4 ]
DuPage, Michel J. [1 ]
Whittaker, Charles A. [1 ]
Hoersch, Sebastian [1 ]
Yoon, Stephanie [1 ]
Crowley, Denise [1 ]
Bronson, Roderick T. [5 ]
Chiang, Derek Y. [3 ,4 ,6 ]
Meyerson, Matthew [3 ,4 ]
Jacks, Tyler [1 ,2 ,7 ,8 ]
机构
[1] MIT, David H Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA
[2] MIT, Ludwig Ctr Mol Oncol, Cambridge, MA 02139 USA
[3] Harvard Univ, Dana Farber Canc Inst, Cambridge, MA 02115 USA
[4] Broad Inst, Cambridge, MA 02142 USA
[5] Tufts Univ, Sch Vet, Dept Biomed Sci, North Grafton, MA 01536 USA
[6] Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA
[7] MIT, Dept Biol, Cambridge, MA 02139 USA
[8] MIT, Howard Hughes Med Inst, Cambridge, MA 02139 USA
基金
美国国家卫生研究院;
关键词
EMBRYONIC STEM-CELLS; CLINICAL-SIGNIFICANCE; PROTEIN EXPRESSION; BREAST-CANCER; SELF-RENEWAL; HMGI-C; K-RAS; METASTASIS; P53; ONCOGENE;
D O I
10.1038/nature09881
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite the high prevalence and poor outcome of patients with metastatic lung cancer the mechanisms of tumour progression and metastasis remain largely uncharacterized. Here we modelled human lung adenocarcinoma, which frequently harbours activating point mutations in KRAS(1) and inactivation of the p53 pathway(2), using conditional alleles in mice(3-5). Lentiviral-mediated somatic activation of oncogenic Kras and deletion of p53 in the lung epithelial cells of Kras(LSL-G12D/+); p53(flox/flox) mice initiates lung adenocarcinoma development(4). Although tumours are initiated synchronously by defined genetic alterations, only a subset becomes malignant, indicating that disease progression requires additional alterations. Identification of the lentiviral integration sites allowed us to distinguish metastatic from non-metastatic tumours and determine the gene expression alterations that distinguish these tumour types. Cross-species analysis identified the NK2-related homeobox transcription factor Nkx2-1 (also called Ttf-1 or Titf1) as a candidate suppressor of malignant progression. In this mouse model, Nkx2-1 negativity is pathognomonic of high-grade poorly differentiated tumours. Gain-and loss-of-function experiments in cells derived from metastatic and non-metastatic tumours demonstrated that Nkx2-1 controls tumour differentiation and limits metastatic potential in vivo. Interrogation of Nkx2-1-regulated genes, analysis of tumours at defined developmental stages, and functional complementation experiments indicate that Nkx2-1 constrains tumours in part by repressing the embryonically restricted chromatin regulator Hmga(2). Whereas focal amplification of NKX2-1 in a fraction of human lung adenocarcinomas has focused attention on its oncogenic function(6-9), our data specifically link Nkx2-1 downregulation to loss of differentiation, enhanced tumour seeding ability and increased metastatic proclivity. Thus, the oncogenic and suppressive functions of Nkx2-1 in the same tumour type substantiate its role as a dual function lineage factor.
引用
收藏
页码:101 / U120
页数:7
相关论文
共 50 条
  • [21] NKX2-1 controls lung cancer progression by inducing DUSP6 to dampen ERK activity
    Mendoza, Michelle
    Ingram, Kelley
    Samson, Shiela
    FASEB JOURNAL, 2021, 35
  • [22] NKX2-1 controls lung cancer progression by inducing DUSP6 to dampen ERK activity
    Ingram, Kelley
    Samson, Shiela C.
    Zewdu, Rediet
    Zitnay, Rebecca G.
    Snyder, Eric L.
    Mendoza, Michelle C.
    ONCOGENE, 2022, 41 (02) : 293 - 300
  • [23] An NKX2-1/ERK/WNT feedback loop modulates gastric identity and response to targeted therapy in lung adenocarcinoma
    Zewdu, Rediet
    Mehrabad, Elnaz Mirzaei
    Ingram, Kelley
    Fang, Pengshu
    Gillis, Katherine L.
    Camolotto, Soledad A.
    Orstad, Grace
    Jones, Alex
    Mendoza, Michelle C.
    Spike, Benjamin T.
    Snyder, Eric L.
    ELIFE, 2021, 10
  • [24] DEVELOPMENT The many faces of NKX2-1
    Whalley, Katherine
    NATURE REVIEWS NEUROSCIENCE, 2008, 9 (11) : 802+803 - 803
  • [25] Deciphering an isolated lung phenotype of NKX2-1 frameshift pathogenic variant
    Delestrain, Celine
    Aissat, Abdel
    Nattes, Elodie
    Gibertini, Isabelle
    Lacroze, Valerie
    Simon, Stephanie
    Decrouy, Xavier
    de Becdelievre, Alix
    Fanen, Pascale
    Epaud, Ralph
    FRONTIERS IN PEDIATRICS, 2023, 10
  • [26] Repression of NKX2-1 promote epithelial-mesenchymal transition and tumor neutrophil recruitment in lung cancer progression
    Chiou, Shih-Hwa
    Tsai, Ping-Hsing
    Wang, Mong-Lien
    CANCER RESEARCH, 2024, 84 (06)
  • [27] The Prognostic Value of TTF-1/NKX2-1 in Lung Squamous Cell Carcinoma
    Liao, Yida
    Yang, Fan
    Li, Xiao
    Chen, Kezhong
    Wang, Jun
    APPLIED IMMUNOHISTOCHEMISTRY & MOLECULAR MORPHOLOGY, 2023, 31 (06) : 414 - 420
  • [28] MicroRNA-365 regulates NKX2-1, a key mediator of lung cancer
    Kang, Sung-Min
    Lee, Heon-Jin
    Cho, Je-Yoel
    CANCER LETTERS, 2013, 335 (02) : 487 - 494
  • [29] Brain-lung-thyroid syndrome due to a new NKX2-1 mutation
    Maristella, Santi
    Deborah, Bartholdi
    Gabor, Szinnai
    Karl, Heinimann
    Britta, Seebauer
    Maya, Steinlin
    Emma, Fluck Christa
    SWISS MEDICAL WEEKLY, 2019, 149 : 22S - 22S
  • [30] Developmental expression of the Xenopus Nkx2-1 and Nkx2-4 genes
    Small, EM
    Vokes, SA
    Garriock, RJ
    Li, DL
    Krieg, PA
    MECHANISMS OF DEVELOPMENT, 2000, 96 (02) : 259 - 262