Thermo-optical responses of nanoparticles: Melting of ice and nanocalorimetry approach

被引:24
|
作者
Richardson, Hugh H.
Thomas, Alyssa C.
Carlson, Michael T.
Kordesch, Martin E.
Govorov, Alexander O.
机构
[1] Ohio Univ, Athens, OH 45701 USA
[2] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
gold nanoparticles; heat generation; thermo-optical responses; nanocalorimetry;
D O I
10.1007/s11664-007-0279-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The thermo-optical properties of gold nanoparticles (NPs) embedded in an ice matrix were investigated using photoluminescence and Raman spectroscopy. An intense laser beam alone will not melt ice, but the addition of embedded Au NPs allows for melting with resonant laser light of relatively weak intensity. This is due to the strong absorption of Au NPs in the plasmon resonance regimen. We can determine the threshold melting power, P (melting)(T), where T is the background temperature by recording time-resolved Raman scattering signals of the system. A resultant loss of ice signal indicates melting and an absence of conversion to water implicates an irreversible loss of water molecules to the gas phase due to the location of the Au NP agglomerate at or near the ice/vapor surface. For fully embedded NP agglomerates, the ice/water phase transition can be monitored through Raman spectroscopy and the number of NPs in an agglomerate and their interactions can have a greater effect on localized heat generation. The local temperature inside and around the NP agglomerate depends strongly on its geometry and leads to a large scatter in the measured P (melting) as a function of the reduced temperature for different agglomerates. Immobilized Au NP agglomerates can also be characterized using single-particle spectroscopy, and results show that the plasmon emission of Au NPs scales with the number of NPs in an agglomerate.
引用
收藏
页码:1587 / 1593
页数:7
相关论文
共 50 条
  • [21] Thermo-optical dissociation of sulphur dioxide
    Wieland, K
    NATURE, 1932, 130 : 847 - 848
  • [22] Investigation of thermo-optical characteristics of the interaction processes of laser radiation with silver nanoparticles
    Pustovalov, V. K.
    Astafyeva, L. G.
    LASER PHYSICS, 2013, 23 (06)
  • [23] Thermo-optical properties of gold nanoparticles embedded in the oxygenated and deoxygenated human blood
    Akouibaa, A.
    Masrour, R.
    Benhamou, M.
    Derouiche, A.
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (10)
  • [24] Thermo-optical properties of gold nanoparticles embedded in the oxygenated and deoxygenated human blood
    A. Akouibaa
    R. Masrour
    M. Benhamou
    A. Derouiche
    Optical and Quantum Electronics, 2023, 55
  • [25] Golden Vaterite as a Thermo-Optical Agent
    Ushkov, Andrei
    Bezrukov, Pavel
    Kolchanov, Denis
    Machnev, Andrey
    Ginzburg, Pavel
    LASER & PHOTONICS REVIEWS, 2025,
  • [26] Thermo-optical characteristics of DKDP crystal
    Mironov, E. A.
    Vyatkin, A. G.
    Starobor, A. V.
    Palashov, O. V.
    LASER PHYSICS LETTERS, 2017, 14 (03)
  • [27] Thermo-Optical Studies of Laser Ceramics
    Palashov, Oleg, V
    Starobor, Aleksey, V
    Perevezentsev, Evgeniy A.
    Snetkov, Ilya L.
    Mironov, Evgeniy A.
    Yakovlev, Alexey, I
    Balabanov, Stanislav S.
    Permin, Dmitry A.
    Belyaev, Alexander, V
    MATERIALS, 2021, 14 (14)
  • [28] Thermo-optical properties and nonlinear optical response of smectic liquid crystals containing gold nanoparticles
    de Melo, P. B.
    Nunes, A. M.
    Omena, L.
    do Nascimento, S. M. S.
    da Silva, M. G. A.
    Meneghetti, M. R.
    de Oliveira, I. N.
    PHYSICAL REVIEW E, 2015, 92 (04):
  • [29] Selection of thermo-optical parameter of nanoparticles for achievement of their maximal thermal energy under optical irradiation
    Pustovalov, V. K.
    Astafyeva, L. G.
    Fritzsche, W.
    NANO ENERGY, 2013, 2 (06) : 1137 - 1141
  • [30] Silver Nanocolloid: Synthesis, Optical and Thermo-Optical Properties
    Hashemizadeh, Sakineh
    Huyeh, Majid Rashidi
    ULTRAFINE GRAINED AND NANO-STRUCTURED MATERIALS IV, 2014, 829 : 670 - 674