A latent variable model for ordinal variables

被引:42
|
作者
Moustaki, I [1 ]
机构
[1] Univ London London Sch Econ & Polit Sci, Dept Stat, London WC2A 2AE, England
关键词
full-information maximum likelihood estimation; generalized latent variable model; ordinal items; proportional odds model;
D O I
10.1177/01466210022031679
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
A full-information maximum likelihood method for fitting a multidimensional latent variable model to a set of ordinal observed variables is discussed. This method is an implementation of a general class of models for ordinal variables, and for regression models with one ordinal dependent variable and all explanatory variables observed. Estimation of the model, scoring of persons on the latent dimensions, and the goodness-of-fit of the model are also discussed. The method is applied to an example dataset concerning attitudes toward technology.
引用
收藏
页码:211 / 223
页数:13
相关论文
共 50 条
  • [41] A Constrained Latent Variable Model
    Varol, Aydin
    Salzmann, Mathieu
    Fua, Pascal
    Urtasun, Raquel
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 2248 - 2255
  • [42] Predicting group-level outcome variables from variables measured at the individual level: A latent variable multilevel model
    Croon, Marcel A.
    van Veldhoven, Marc J. P. M.
    PSYCHOLOGICAL METHODS, 2007, 12 (01) : 45 - 57
  • [43] Bayesian semiparametric analysis for latent variable models with mixed continuous and ordinal outcomes
    Xia, Yemao
    Gou, Jianwei
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2016, 45 (03) : 451 - 465
  • [44] Bayesian semiparametric analysis for latent variable models with mixed continuous and ordinal outcomes
    Yemao Xia
    Jianwei Gou
    Journal of the Korean Statistical Society, 2016, 45 : 451 - 465
  • [45] Ordinal latent variable models and their application in the study of newly licensed teenage drivers
    Jackson, John C.
    Albert, Paul S.
    Zhang, Zhiwei
    Simons-Morton, Bruce
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2013, 62 (03) : 435 - 450
  • [46] A new approach in model selection for ordinal target variables
    Elena Ballante
    Silvia Figini
    Pierpaolo Uberti
    Computational Statistics, 2022, 37 : 43 - 56
  • [47] A new approach in model selection for ordinal target variables
    Ballante, Elena
    Figini, Silvia
    Uberti, Pierpaolo
    COMPUTATIONAL STATISTICS, 2022, 37 (01) : 43 - 56
  • [48] GAUSSIAN DISTRIBUTED GRAPH CONSTRAINED MULTI-MODAL GAUSSIAN PROCESS LATENT VARIABLE MODEL FOR ORDINAL LABELED DATA
    Maeda, Keisuke
    Ogawa, Takahiro
    Haseyama, Miki
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3798 - 3802
  • [49] GAUSSIAN DISTRIBUTED GRAPH CONSTRAINED MULTI-MODAL GAUSSIAN PROCESS LATENT VARIABLE MODEL FOR ORDINAL LABELED DATA
    Maeda, Keisuke
    Ogawa, Takahiro
    Haseyama, Miki
    Proceedings - International Conference on Image Processing, ICIP, 2022, : 3798 - 3802
  • [50] Identification model based on latent variables
    Barkalov, S. A.
    Bekirova, O. N.
    Kalinina, N. Yu
    Moiseev, S., I
    II INTERNATIONAL SCIENTIFIC CONFERENCE ON APPLIED PHYSICS, INFORMATION TECHNOLOGIES AND ENGINEERING 25, PTS 1-5, 2020, 1679