Silicon Quantum Dot Luminescent Solar Concentrators and Downshifters with Antireflection Coatings for Enhancing Perovskite Solar Cell Performance

被引:14
|
作者
Ren, Shuzhen [1 ]
Shou, Chunhui [2 ,3 ]
Jin, Shengli [2 ,3 ]
Chen, Guo [1 ]
Han, Shanshan [1 ]
Chen, Zongqi [4 ]
Chen, Xinyu [4 ]
Yang, Songwang [4 ]
Guo, Yunlong [1 ]
Tu, Chang-Ching [1 ]
机构
[1] Shanghai Jiao Tong Univ, Univ Michigan Shanghai Jiao Tong Univ Joint Inst, Shanghai 200240, Peoples R China
[2] Zhejiang Energy Grp R&D Inst Co Ltd, Hangzhou 311121, Zhejiang, Peoples R China
[3] Key Lab Solar Energy Utilizat & Energy Saving Tec, Hangzhou 311121, Zhejiang, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Ceram, CAS Key Lab Mat Energy Convers, Shanghai 201899, Peoples R China
关键词
silicon quantum dots; luminescent solar concentrators; downshifters; antireflection coatings; perovskite solar cells; EFFICIENT;
D O I
10.1021/acsphotonics.1c00550
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, we demonstrate a four-terminal tandem solar cell consisting of a luminescent solar concentrator (LSC) based on silicon quantum dots (SiQDs) in front of a 4 cm X 4 cm perovskite solar cell (PSC). The LSC front surface is uniformly covered with a nanoporous poly(methyl methacrylate) (PMMA) antireflection coating, which can enhance the transmission by up to 3% from the visible to the near-infrared range. The colloidal SiQDs inside the LSC primarily absorb the UV portion of the solar irradiation, re-emitting red fluorescence, which propagates to the waveguide edges for generating electricity while allowing the rest of the incident sunlight to be absorbed in the back PSC. With an air gap between the SiQD-LSC and PSC, compared to the bare PSC, the two devices in combination exhibits significant external quantum efficiency (EQE) enhancement under 365 nm UV illumination, but shows no power conversion efficiency (PCE) enhancement under xenon arc lamp illumination. In contrast, when the air gap is removed, the SiQD-LSC becomes a luminescent downshifter than a concentrator, with most of the SiQD fluorescence being absorbed by the back PSC. In this case, the SiQD-LSC/PSC tandem solar cell can achieve up to 6.2% PCE enhancement over the bare PSC at low SiQD concentrations. Particularly, at 1.08 mg mL(-1) , although the tandem solar cell has about the same PCE as the bare PSC, the front SiQD-LSC absorbs 69% of the solar UV, making the back PSC more stable than the bare PSC.
引用
收藏
页码:2392 / 2399
页数:8
相关论文
共 50 条
  • [21] Triplex Glass Laminates with Silicon Quantum Dots for Luminescent Solar Concentrators
    Huang, Jing
    Zhou, Jingjian
    Haraldsson, Tommy
    Clemments, Alden
    Fujii, Minoru
    Sugimoto, Hiroshi
    Xu, Bo
    Sychugov, Ilya
    SOLAR RRL, 2020, 4 (09)
  • [22] Exciton recycling via InP quantum dot funnels for luminescent solar concentrators
    Houman Bahmani Jalali
    Sadra Sadeghi
    Isinsu Baylam
    Mertcan Han
    Cleva W. Ow-Yang
    Alphan Sennaroglu
    Sedat Nizamoglu
    Nano Research, 2021, 14 : 1488 - 1494
  • [23] Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction
    Chandra, S.
    Doran, J.
    McCormack, S. J.
    Kennedy, M.
    Chatten, A. J.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 98 : 385 - 390
  • [24] Exciton recycling via InP quantum dot funnels for luminescent solar concentrators
    Bahmani Jalali, Houman
    Sadeghi, Sadra
    Baylam, Isinsu
    Han, Mertcan
    Ow-Yang, Cleva W.
    Sennaroglu, Alphan
    Nizamoglu, Sedat
    NANO RESEARCH, 2021, 14 (05) : 1488 - 1494
  • [25] Large area quantum dot luminescent solar concentrators for use with dye-sensitised solar cells
    Brennan, Lorcan J.
    Purcell-Milton, Finn
    McKenna, Barry
    Watson, Trystan M.
    Gun'ko, Yurii K.
    Evans, Rachel C.
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (06) : 2671 - 2680
  • [26] Minimizing Scaling Losses in High-Performance Quantum Dot Luminescent Solar Concentrators for Large-Area Solar Windows
    Makarov, Nikolay S.
    Korus, Daniel
    Freppon, Daniel
    Ramasamy, Karthik
    Houck, Daniel W.
    Velarde, Andres
    Parameswar, Ashray
    Bergren, Matthew R.
    McDaniel, Hunter
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (26) : 29679 - 29689
  • [27] Perovskite quantum dots integrated in large-area luminescent solar concentrators
    Zhao, Haiguang
    Zhou, Yufeng
    Benetti, Daniele
    Ma, Dongling
    Rosei, Federico
    NANO ENERGY, 2017, 37 : 214 - 223
  • [28] Silicon Quantum Dot-Poly(methyl methacrylate) Nanocomposites with Reduced Light Scattering for Luminescent Solar Concentrators
    Hill, Samantha K. E.
    Connell, Ryan
    Peterson, Colin
    Hollinger, Jon
    Hillmyer, Marc A.
    Kortshagen, Uwe
    Ferry, Vivian E.
    ACS PHOTONICS, 2019, 6 (01) : 170 - 180
  • [29] A Review of Perovskite Nanocrystal Applications in Luminescent Solar Concentrators
    Zhou, Nan
    Wang, Dourong
    Bao, Yaqi
    Zhu, Ruixue
    Yang, Peihui
    Song, Lin
    ADVANCED OPTICAL MATERIALS, 2023, 11 (14)
  • [30] Luminescent Solar Concentrators from Waterborne Polymer Coatings
    Minei, Pierpaolo
    Iasilli, Giuseppe
    Ruggeri, Giacomo
    Pucci, Andrea
    COATINGS, 2020, 10 (07)