Process Design of Laser Powder Bed Fusion of Stainless Steel Using a Gaussian Process-Based Machine Learning Model

被引:57
|
作者
Meng, Lingbin [1 ]
Zhang, Jing [1 ]
机构
[1] Indiana Univ Purdue Univ, Dept Mech & Energy Engn, Indianapolis, IN 46202 USA
基金
美国国家科学基金会;
关键词
SOLIDIFICATION MICROSTRUCTURE; FLUID-DYNAMICS; FABRICATION; PREDICTION; STRENGTH; POROSITY; FLOW;
D O I
10.1007/s11837-019-03792-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, a Gaussian process (GP)-based machine learning model is developed to predict the remelted depth of single tracks, as a function of combined laser power and laser scan speed in a laser powder bed fusion process. The GP model is trained by both simulation and experimental data from the literature. The mean absolute prediction error magnified by the GP model is only 0.6 mu m for a powder bed with layer thickness of 30 mu m, suggesting the adequacy of the GP model. Then, the process design maps of two metals, 316L and 17-4 PH stainless steels, are developed using the trained model. The normalized enthalpy criterion of identifying keyhole mode is evaluated for both stainless steels. For 316L, the result suggests that the Delta Hhs >= 30\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \frac{\Delta H}{{h_{s} }} \ge 30 $$\end{document} criterion should be related to the powder layer thickness. For 17-4 PH, the criterion should be revised to Delta Hhs >= 25\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \frac{\Delta H}{{h_{s} }} \ge 25 $$\end{document}.
引用
收藏
页码:420 / 428
页数:9
相关论文
共 50 条
  • [21] Implementation of a Gaussian process-based machine learning grasp predictor
    Alex K. Goins
    Ryan Carpenter
    Weng-Keen Wong
    Ravi Balasubramanian
    Autonomous Robots, 2016, 40 : 687 - 699
  • [22] Process and feedstock driven microstructure for laser powder bed fusion of 316L stainless steel
    Heiden, Michael J.
    Jensen, Scott C.
    Koepke, Josh R.
    Saiz, David J.
    Dickens, Sara M.
    Jared, Bradley H.
    MATERIALIA, 2022, 21
  • [23] Characterization of AISI 304L stainless steel powder recycled in the laser powder-bed fusion process
    Sutton, Austin T.
    Kriewall, Caitlin S.
    Karnati, Sreekar
    Leu, Ming C.
    Newkirk, Joseph W.
    ADDITIVE MANUFACTURING, 2020, 32
  • [24] PHYSICS-INFORMED GAUSSIAN PROCESS BASED OPTIMAL CONTROL OF LASER POWDER BED FUSION
    Ren, Yong
    Wang, Qian
    PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE, DSCC2020, VOL 2, 2020,
  • [25] Laser powder bed fusion process optimization of CoCrMo alloy assisted by machine-learning
    Li, Haoqing
    Song, Bao
    Wang, Yizhen
    Zhang, Jingrui
    Zhao, Weihong
    Fang, Xiaoying
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 3901 - 3910
  • [26] A machine learning methodology for porosity classification and process map prediction in laser powder bed fusion
    Staszewska, Adrianna
    Patil, Deepali P.
    Dixith, Akshatha C.
    Neamtu, Rodica
    Lados, Diana A.
    PROGRESS IN ADDITIVE MANUFACTURING, 2024, 9 (06) : 1901 - 1911
  • [27] An alloy-agnostic machine learning framework for process mapping in laser powder bed fusion
    Wilkinson, Toby
    Casata, Massimiliano
    Barba, Daniel
    RAPID PROTOTYPING JOURNAL, 2024, 30 (11) : 302 - 323
  • [28] Effect of laser scan pattern in laser powder bed fusion process : The case of 316L stainless steel
    Roirand, Hugo
    Malard, Benoit
    Hor, Anis
    Saintier, Nicolas
    9TH EDITION OF THE INTERNATIONAL CONFERENCE ON FATIGUE DESIGN, FATIGUE DESIGN 2021, 2022, 38 : 149 - 158
  • [29] Maraging steel powder alteration caused by laser powder bed fusion printing process
    Rayan, Othmane
    Brousseau, Jean
    Belzile, Claude
    El Ouafi, Abderrazak
    MATERIALS SCIENCE IN ADDITIVE MANUFACTURING, 2023, 2 (03):
  • [30] Process parameter selection and optimization of laser powder bed fusion for 316L stainless steel: A review
    Ahmed, N.
    Barsoum, I.
    Haidemenopoulos, G.
    Abu Al-Rub, R. K.
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 75 : 415 - 434