Soil microbial and plant community responses to single large carbon and nitrogen additions in low arctic tundra

被引:27
|
作者
Churchland, Carolyn [1 ]
Mayo-Bruinsma, Liesha [1 ]
Ronson, Alison [1 ]
Grogan, Paul [1 ]
机构
[1] Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Biomass; Competition; Evergreen; Graminoid; Nitrogen immobilization; Soil depth; Tundra; NPK FERTILIZER; GROWTH FORMS; DWARF SHRUB; BIOMASS C; NUTRIENT; TEMPERATURE; MINERALIZATION; MICROORGANISMS; MYCORRHIZAS; COMPETITION;
D O I
10.1007/s11104-010-0392-4
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Plant production and community composition in many mid- and high latitude ecosystems is strongly controlled by nitrogen (N) availability. We investigated the effects of large factorial additions of labile carbon (C) (sucrose) and N (NH4NO3) in a single year on soil microbial and plant biomass pools over subsequent years in a widespread low arctic mesic tundra ecosystem. Soil microbes took up large amounts of N within weeks of its addition, and this accumulation was maintained over at least 2 years. Microbial biomass C was unaffected, strongly suggesting that the addition had rapidly elevated microbial N concentrations (by similar to 50%). Microbial biomass N and root N (per unit soil volume) decreased with depth down through the organic and mineral layers in all treatments, indicating that most of the added N was retained within the top 5 cm of the organic layer 2 years after the additions. In contrast to N, the C additions had no significant effects. Finally, plant shoot N concentrations 3 years after the additions were significantly enhanced primarily in the evergreen species which dominate this ecosystem-type, resulting in a similar to 50% increase in evergreen shoot N accumulation but no corresponding change in biomass. Our study demonstrates a very rapid and substantial microbial N sink capacity that is likely to be particularly important in determining N availability to plants over weekly to annual timescales in this tundra ecosystem. Furthermore, the results suggest that the moderate increases in tundra soil N supply expected due to climate warming could be largely immobilized by microbes, resulting in slower and more evergreen-dominated plant community responses than are predicted from long-term, annually repeated, high-level fertilisation studies.
引用
收藏
页码:409 / 421
页数:13
相关论文
共 50 条
  • [21] Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest
    Wang, Cong
    Lu, Xiankai
    Mori, Taiki
    Mao, Qinggong
    Zhou, Kaijun
    Zhou, Guoyi
    Nie, Yanxia
    Mo, Jiangming
    SOIL BIOLOGY & BIOCHEMISTRY, 2018, 121 : 103 - 112
  • [22] Metatranscriptomic responses of High-Arctic tundra soil microbiomes to carbon input
    Varliero, Gilda
    Frossard, Aline
    Qi, Weihong
    Stierli, Beat
    Frey, Beat
    SOIL BIOLOGY & BIOCHEMISTRY, 2024, 197
  • [23] Asynchronous responses of soil microbial community and understory plant community to simulated nitrogen deposition in a subtropical forest
    Wu, Jianping
    Liu, Wenfei
    Fan, Houbao
    Huang, Guomin
    Wan, Songze
    Yuan, Yinghong
    Ji, Chunfeng
    ECOLOGY AND EVOLUTION, 2013, 3 (11): : 3895 - 3905
  • [24] Different responses of soil organic carbon fractions to additions of nitrogen
    Chen, H.
    Li, D.
    Feng, W.
    Niu, S.
    Plante, A. F.
    Luo, Y.
    Wang, K.
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2018, 69 (06) : 1098 - 1104
  • [25] Soil microbial community and carbon and nitrogen fractions responses to mulching under winter wheat
    Fu, Xin
    Wang, Jun
    Sainju, Upendra M.
    Zhao, Fazhu
    Liu, Wenzhao
    APPLIED SOIL ECOLOGY, 2019, 139 : 64 - 68
  • [26] Close coupling of plant functional types with soil microbial community composition drives soil carbon and nutrient cycling in tundra heath
    Koranda, Marianne
    Rinnan, Riikka
    Michelsen, Anders
    PLANT AND SOIL, 2023, 488 (1-2) : 551 - 572
  • [27] Close coupling of plant functional types with soil microbial community composition drives soil carbon and nutrient cycling in tundra heath
    Marianne Koranda
    Riikka Rinnan
    Anders Michelsen
    Plant and Soil, 2023, 488 : 551 - 572
  • [28] Inconsistent responses of soil microbial community structure and enzyme activity to nitrogen and phosphorus additions in two tropical forests
    Ma, Suhui
    Chen, Guoping
    Tang, Wenguang
    Xing, Aijun
    Chen, Xiao
    Xiao, Wen
    Zhou, Luhong
    Zhu, Jiangling
    Li, Yide
    Zhu, Biao
    Fang, Jingyun
    PLANT AND SOIL, 2021, 460 (1-2) : 453 - 468
  • [29] Inconsistent responses of soil microbial community structure and enzyme activity to nitrogen and phosphorus additions in two tropical forests
    Suhui Ma
    Guoping Chen
    Wenguang Tang
    Aijun Xing
    Xiao Chen
    Wen Xiao
    Luhong Zhou
    Jiangling Zhu
    Yide Li
    Biao Zhu
    Jingyun Fang
    Plant and Soil, 2021, 460 : 453 - 468
  • [30] Soil microbial biomass, nutrient availability and nitrogen mineralization potential among vegetation-types in a low arctic tundra landscape
    Haiyan Chu
    Paul Grogan
    Plant and Soil, 2010, 329 : 411 - 420