Density functional theory;
C-H activation;
Pd(II) and Pd(IV) complex;
Site selectivity;
REDUCTIVE ELIMINATION;
ARYLATION;
REACTIVITY;
MECHANISM;
FUNCTIONALIZATION;
REAGENTS;
FLUORINATION;
OXIDATION;
ELECTRON;
LIGANDS;
D O I:
10.1016/j.comptc.2015.01.003
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
The reaction mechanism of Pd(II) and Pd(IV) complex catalyzed C-H bond activation was investigated by density functional theory. The difference between the two complex catalyzed reactions was uncovered. It can be concluded from the calculated results that the energy barrier difference (E-Ab-E-Aa) of Pd(II) complex catalyzed reaction is higher than that (E-Bb-E-Ba) of Pd(IV) complex catalyzed reaction in the rate-determining step, which induces the higher site selectivity of Pd(II) complex catalyzed reaction. The degree of energy barrier difference should be related to synergic effect between the steric effect of methyl and the space distribution of HOMO-C-p and LUMO-Pd-d orbitals. In other words, this synergic effect should be responsible for the different site selectivity between Pd(II) and Pd(IV) complex catalyzed C-H bond activation. (C) 2015 Elsevier B.V. All rights reserved.