Low Power Speaker Identification by Integrated Clustering and Gaussian Mixture Model Scoring

被引:11
|
作者
Iliev, Nick [1 ]
Gianelli, Alberto [1 ]
Trivedi, Amit Ranjan [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA
关键词
Gaussian mixture model (GMM); k-means clustering; low power; speaker identification (SI);
D O I
10.1109/LES.2019.2915953
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This letter discusses a novel low-power digital CMOS architecture for speaker identification (SI) by combining $k$ -means clustering with Gaussian mixture model (GMM) scoring. We show that $k$ -means clustering at the front-end reduces the dimensionality of speech features to minimize downstream processing without affecting SI accuracy. Implementation of cluster generator is discussed with novel distance computing and online centroid update datapaths to minimize overhead of the clustering layer (CL). The integrated design achieves $6\times $ lower energy than the conventional for SI among ten speakers.
引用
收藏
页码:9 / 12
页数:4
相关论文
共 50 条
  • [31] FULLY BAYESIAN INFERENCE OF MULTI-MIXTURE GAUSSIAN MODEL AND ITS EVALUATION USING SPEAKER CLUSTERING
    Tawara, Naohiro
    Ogawa, Tetsuji
    Watanabe, Shinji
    Kobayashi, Tetsunori
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 5253 - 5256
  • [32] Signature Cluster Model Selection for Incremental Gaussian Mixture Cluster Modeling in Agglomerative Hierarchical Speaker Clustering
    Han, Kyu J.
    Narayanan, Shrikanth S.
    INTERSPEECH 2009: 10TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2009, VOLS 1-5, 2009, : 2515 - 2518
  • [33] ROBUST TEXT-INDEPENDENT SPEAKER IDENTIFICATION USING GAUSSIAN MIXTURE SPEAKER MODELS
    REYNOLDS, DA
    ROSE, RC
    IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 1995, 3 (01): : 72 - 83
  • [34] EFFICIENT SPEAKER IDENTIFICATION USING DISTRIBUTIONAL SPEAKER MODEL CLUSTERING
    Apsingekar, Vijendra Raj
    De Leon, Phillip L.
    2008 42ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-4, 2008, : 1260 - 1264
  • [35] Speaker identification using hybrid Karhunen-Loeve transform and Gaussian mixture model approach
    Chen, CCT
    Chen, CT
    Hou, CK
    PATTERN RECOGNITION, 2004, 37 (05) : 1073 - 1075
  • [36] Identification of switched systems based on Gaussian mixture clustering
    Chai X.-J.
    Wang H.-W.
    Wang L.
    Ji X.-R.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2021, 38 (05): : 634 - 640
  • [37] OPTIMALITY OF SPECTRAL CLUSTERING IN THE GAUSSIAN MIXTURE MODEL
    Loeffler, Matthias
    Zhang, Anderson Y.
    Zhou, Harrison H.
    ANNALS OF STATISTICS, 2021, 49 (05): : 2506 - 2530
  • [38] Multivariate data clustering for the Gaussian mixture model
    Kavaliauskas, M
    Rudzkis, R
    INFORMATICA, 2005, 16 (01) : 61 - 74
  • [39] Agglomerative Hierarchical Speaker Clustering using Incremental Gaussian Mixture Cluster Modeling
    Han, Kyu J.
    Narayanan, Shrikanth S.
    INTERSPEECH 2008: 9TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2008, VOLS 1-5, 2008, : 20 - 23
  • [40] Gaussian Mixture Model Clustering with Incomplete Data
    Zhang, Yi
    Li, Miaomiao
    Wang, Siwei
    Dai, Sisi
    Luo, Lei
    Zhu, En
    Xu, Huiying
    Zhu, Xinzhong
    Yao, Chaoyun
    Zhou, Haoran
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (01)