Programmed-1 ribosomal frameshifting from the perspective of the conformational dynamics of mRNA and ribosomes

被引:9
|
作者
Chang, Kai-Chun [1 ,2 ]
Wen, Jin-Der [3 ,4 ,5 ]
机构
[1] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, Sch Med, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, Sch Pharm, San Francisco, CA 94158 USA
[3] Natl Taiwan Univ, Inst Mol & Cellular Biol, Taipei 10617, Taiwan
[4] Natl Taiwan Univ, Genome & Syst Biol Degree Program, Taipei 10617, Taiwan
[5] Acad Sinica, Taipei 10617, Taiwan
关键词
Ribosomal frameshifting; Single-molecule; Optical tweezers; smFRET; MD simulation; Cryo-EM; AMINOACYL-TRANSFER-RNA; BACTERIAL RIBOSOME; SINGLE RIBOSOMES; NUCLEIC-ACIDS; HYBRID-STATE; PSEUDOKNOT; EFFICIENCY; MOVEMENT; TRANSLATION; TRANSLOCATION;
D O I
10.1016/j.csbj.2021.06.015
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Programmed-1 ribosomal frameshifting (-1 PRF) is a translation mechanism that regulates the relative expression level of two proteins encoded on the same messenger RNA (mRNA). This regulation is commonly used by viruses such as coronaviruses and retroviruses but rarely by host human cells, and for this reason, it has long been considered as a therapeutic target for antiviral drug development. Understanding the molecular mechanism of -1 PRF is one step toward this goal. Minus-one PRF occurs with a certain efficiency when translating ribosomes encounter the specialized mRNA signal consisting of the frameshifting site and a downstream stimulatory structure, which impedes translocation of the ribosome. The impeded ribosome can still undergo profound conformational changes to proceed with translocation; however, some of these changes may be unique and essential to frameshifting. In addition, most stimulatory structures exhibit conformational dynamics and sufficient mechanical strength, which, when under the action of ribosomes, may in turn further promote-1 PRF efficiency. In this review, we discuss how the dynamic features of ribosomes and mRNA stimulatory structures may influence the occurrence of -1 PRF and propose a hypothetical frameshifting model that recapitulates the role of conformational dynamics. (C) 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
引用
收藏
页码:3580 / 3588
页数:9
相关论文
共 50 条
  • [31] Thermodynamic control of-1 programmed ribosomal frameshifting
    Bock, Lars V.
    Caliskan, Neva
    Korniy, Natalia
    Peske, Frank
    Rodnina, Marina V.
    Grubmueller, Helmut
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [32] Dynamics of+1 ribosomal frameshifting
    Xie, Ping
    MATHEMATICAL BIOSCIENCES, 2014, 249 : 44 - 51
  • [33] A rapid, inexpensive yeast-based dual-fluorescence assay of programmed-1 ribosomal frameshifting for high-throughput screening
    Rakauskaite, Rasa
    Liao, Pei-Yu
    Rhodin, Michael H. J.
    Lee, Kelvin
    Dinman, Jonathan D.
    NUCLEIC ACIDS RESEARCH, 2011, 39 (14) : e97
  • [34] High frequency of +1 programmed ribosomal frameshifting in Euplotes octocarinatus
    Ruanlin Wang
    Jie Xiong
    Wei Wang
    Wei Miao
    Aihua Liang
    Scientific Reports, 6
  • [35] A stochastic model of translation with-1 programmed ribosomal frameshifting
    Bailey, Brenae L.
    Visscher, Koen
    Watkins, Joseph
    PHYSICAL BIOLOGY, 2014, 11 (01)
  • [36] -1 Programmed Ribosomal Frameshifting as a Force-Dependent Process
    Visscher, Koen
    NANOTECHNOLOGY TOOLS FOR THE STUDY OF RNA, 2016, 139 : 45 - 72
  • [37] N1-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting
    Thomas E. Mulroney
    Tuija Pöyry
    Juan Carlos Yam-Puc
    Maria Rust
    Robert F. Harvey
    Lajos Kalmar
    Emily Horner
    Lucy Booth
    Alexander P. Ferreira
    Mark Stoneley
    Ritwick Sawarkar
    Alexander J. Mentzer
    Kathryn S. Lilley
    C. Mark Smales
    Tobias von der Haar
    Lance Turtle
    Susanna Dunachie
    Paul Klenerman
    James E. D. Thaventhiran
    Anne E. Willis
    Nature, 2024, 625 : 189 - 194
  • [38] Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV
    Brierley, Ian
    Dos Ramos, Francisco J.
    VIRUS RESEARCH, 2006, 119 (01) : 29 - 42
  • [39] High frequency of+1 programmed ribosomal frameshifting in Euplotes octocarinatus
    Wang, Ruanlin
    Xiong, Jie
    Wang, Wei
    Miao, Wei
    Liang, Aihua
    SCIENTIFIC REPORTS, 2016, 6
  • [40] PRFdb: A database of computationally predicted eukaryotic programmed-1 ribosomal frameshift signals
    Belew, Ashton T.
    Hepler, Nicholas L.
    Jacobs, Jonathan L.
    Dinman, Jonathan D.
    BMC GENOMICS, 2008, 9 (1) : 339