Mass preserving discontinuous Galerkin methods for Schrodinger equations

被引:32
|
作者
Lu, Wenying [1 ]
Huang, Yunqing [1 ]
Liu, Hailiang [2 ]
机构
[1] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[2] Iowa State Univ, Dept Math, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
DDG method; Schrodinger equation; Numerical flux; Mass conservation; Strang splitting method; FINITE-ELEMENT-METHOD; CONSERVATION-LAWS; SPECTRAL METHOD;
D O I
10.1016/j.jcp.2014.11.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We construct, analyze and numerically validate a class of mass preserving, direct discontinuous Galerkin (DDG) schemes for Schrodinger equations subject to both linear and nonlinear potentials. Up to round-off error, these schemes preserve the discrete version of the mass of the continuous solution. For time discretization, we use the Crank-Nicolson for linear Schrodinger equations, and the Strang splitting for nonlinear Schrodinger equations, so that numerical mass is still preserved at each time step. The DDG method when applied to linear Schrodinger equations is shown to have the optimal (k + 1) th order of accuracy for polynomial elements of degree k. The numerical tests demonstrate both accuracy and capacity of these methods. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:210 / 226
页数:17
相关论文
共 50 条
  • [21] Stability of Discontinuous Galerkin Methods for Volterra Integral Equations
    Wen, Jiao
    Li, Min
    Guan, Hongbo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (05) : 5972 - 5986
  • [22] DISCONTINUOUS GALERKIN METHODS FOR THE VLASOV-MAXWELL EQUATIONS
    Cheng, Yingda
    Gamba, Irene M.
    Li, Fengyan
    Morrison, Philip J.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (02) : 1017 - 1049
  • [23] Local discontinuous Galerkin methods for nonlinear dispersive equations
    Levy, D
    Shu, CW
    Yan, J
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 196 (02) : 751 - 772
  • [24] Error estimates for the discontinuous Galerkin methods for parabolic equations
    Chrysafinos, K
    Walkington, NJ
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (01) : 349 - 366
  • [25] DISCONTINUOUS GALERKIN METHODS FOR ORDINARY DIFFERENTIAL-EQUATIONS
    DELFOUR, M
    HAGER, W
    TROCHU, F
    MATHEMATICS OF COMPUTATION, 1981, 36 (154) : 455 - 473
  • [26] Discontinuous Galerkin methods for hyperbolic partial differential equations
    Van der Vegt, JJW
    Van der Ven, H
    Boelens, OJ
    GODUNOV METHODS: THEORY AND APPLICATIONS, 2001, : 985 - 1005
  • [27] Error transport equations implementation for discontinuous Galerkin methods
    Wang, Hongyu
    Roy, Christopher J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 474
  • [28] SUPERCONVERGENCE OF DISCONTINUOUS GALERKIN METHODS FOR LINEAR HYPERBOLIC EQUATIONS
    Cao, Waixiang
    Zhang, Zhimin
    Zou, Qingsong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2555 - 2573
  • [29] Conservative discontinuous Galerkin methods for the nonlinear Serre equations
    Zhao, Jianli
    Zhang, Qian
    Yang, Yang
    Xia, Yinhua
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 421 (421)
  • [30] SUPERCONVERGENT DISCONTINUOUS GALERKIN METHODS FOR NONLINEAR ELLIPTIC EQUATIONS
    Yadav, Sangita
    Pani, Amiya K.
    Park, Eun-Jae
    MATHEMATICS OF COMPUTATION, 2013, 82 (283) : 1297 - 1335