Delving into Universal Lesion Segmentation: Method, Dataset, and Benchmark

被引:3
|
作者
Qiu, Yu [1 ]
Xu, Jing [1 ]
机构
[1] Nankai Univ, Coll Artificial Intelligence, Tianjin 300350, Peoples R China
来源
关键词
Universal lesion segmentation; Lesion segmentation; Dictionary learning; Knowledge embedding; IMAGE DATABASE CONSORTIUM; RESOURCE;
D O I
10.1007/978-3-031-20074-8_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most efforts on lesion segmentation from CT slices focus on one specific lesion type. However, universal and multi-category lesion segmentation is more important because the diagnoses of different body parts are usually correlated and carried out simultaneously. The existing universal lesion segmentation methods are weakly-supervised due to the lack of pixel-level annotation data. To bring this field into the fully-supervised era, we establish a large-scale universal lesion segmentation dataset, SegLesion. We also propose a baseline method for this task. Considering that it is easy to encode CT slices owing to the limited CT scenarios, we propose a Knowledge Embedding Module (KEM) to adapt the concept of dictionary learning for this task. Specifically, KEM first learns the knowledge encoding of CT slices and then embeds the learned knowledge encoding into the deep features of a CT slice to increase the distinguishability. With KEM incorporated, a Knowledge Embedding Network (KEN) is designed for universal lesion segmentation. To extensively compare KEN to previous segmentation methods, we build a large benchmark for SegLesion. KEN achieves state-of-the-art performance and can thus serve as a strong baseline for future research. The data and code have released at https://github.com/yuqiuyuqiu/KEN.
引用
收藏
页码:485 / 503
页数:19
相关论文
共 50 条
  • [21] Lumbar spine segmentation in MR images: a dataset and a public benchmark
    van der Graaf, Jasper W.
    van Hooff, Miranda L.
    Buckens, Constantinus F. M.
    Rutten, Matthieu
    van Susante, Job L. C.
    Kroeze, Robert Jan
    de Kleuver, Marinus
    van Ginneken, Bram
    Lessmann, Nikolas
    SCIENTIFIC DATA, 2024, 11 (01)
  • [22] MarsLS-Net: Martian Landslides Segmentation Network and Benchmark Dataset
    Paheding, Sidike
    Reyes, Abel A.
    Rajaneesh, A.
    Sajinkumar, K. S.
    Oommen, Thomas
    2024 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION, WACV 2024, 2024, : 8221 - 8230
  • [23] A Multitask Benchmark Dataset for Satellite Video: Object Detection, Tracking, and Segmentation
    Li, Shengyang
    Zhou, Zhuang
    Zhao, Manqi
    Yang, Jian
    Guo, Weilong
    Lv, Yixuan
    Kou, Longxuan
    Wang, Han
    Gu, Yanfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [24] Benchmark Tests of Atom Segmentation Deep Learning Models with a Consistent Dataset
    Wei, Jingrui
    Blaiszik, Ben
    Scourtas, Aristana
    Morgan, Dane
    Voyles, Paul M.
    MICROSCOPY AND MICROANALYSIS, 2023, 29 (02) : 552 - 562
  • [25] An Aerial Photogrammetry Benchmark Dataset for Point Cloud Segmentation and Style Translation
    Chen, Meida
    Han, Kangle
    Yu, Zifan
    Feng, Andrew
    Hou, Yu
    You, Suya
    Soibelman, Lucio
    REMOTE SENSING, 2024, 16 (22)
  • [26] BUS-UCLM: Breast ultrasound lesion segmentation dataset
    Vallez, Noelia
    Bueno, Gloria
    Deniz, Oscar
    Rienda, Miguel Angel
    Pastor, Carlos
    SCIENTIFIC DATA, 2025, 12 (01)
  • [27] Delving Into Multi-Illumination Monocular Depth Estimation: A New Dataset and Method
    Liang, Yuan
    Zhang, Zitian
    Xian, Chuhua
    He, Shengfeng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 1018 - 1032
  • [28] Vietnamese Document Analysis: Dataset, Method and Benchmark Suite
    Khang Nguyen
    An Nguyen
    Vo, Nguyen D.
    Nguyen, Tam, V
    IEEE ACCESS, 2022, 10 : 108046 - 108066
  • [29] Multi-Wiki90k: Multilingual Benchmark Dataset for Paragraph Segmentation
    Swedrowski, Michal
    Milkowski, Piotr
    Bojanowski, Bartlomiej
    Kocon, Jan
    ADVANCES IN COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2022, 2022, 1653 : 137 - 149
  • [30] WPS-Dataset: A Benchmark for Wood Plate Segmentation in Bark Removal Processing
    Wang, Rijun
    Zhang, Guanghao
    Liang, Fulong
    Mou, Xiangwei
    Wang, Bo
    Chen, Yesheng
    Sun, Peng
    Wang, Canjin
    FORESTS, 2024, 15 (12):