Delving into Universal Lesion Segmentation: Method, Dataset, and Benchmark

被引:3
|
作者
Qiu, Yu [1 ]
Xu, Jing [1 ]
机构
[1] Nankai Univ, Coll Artificial Intelligence, Tianjin 300350, Peoples R China
来源
关键词
Universal lesion segmentation; Lesion segmentation; Dictionary learning; Knowledge embedding; IMAGE DATABASE CONSORTIUM; RESOURCE;
D O I
10.1007/978-3-031-20074-8_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most efforts on lesion segmentation from CT slices focus on one specific lesion type. However, universal and multi-category lesion segmentation is more important because the diagnoses of different body parts are usually correlated and carried out simultaneously. The existing universal lesion segmentation methods are weakly-supervised due to the lack of pixel-level annotation data. To bring this field into the fully-supervised era, we establish a large-scale universal lesion segmentation dataset, SegLesion. We also propose a baseline method for this task. Considering that it is easy to encode CT slices owing to the limited CT scenarios, we propose a Knowledge Embedding Module (KEM) to adapt the concept of dictionary learning for this task. Specifically, KEM first learns the knowledge encoding of CT slices and then embeds the learned knowledge encoding into the deep features of a CT slice to increase the distinguishability. With KEM incorporated, a Knowledge Embedding Network (KEN) is designed for universal lesion segmentation. To extensively compare KEN to previous segmentation methods, we build a large benchmark for SegLesion. KEN achieves state-of-the-art performance and can thus serve as a strong baseline for future research. The data and code have released at https://github.com/yuqiuyuqiu/KEN.
引用
收藏
页码:485 / 503
页数:19
相关论文
共 50 条
  • [1] The ULS23 challenge: A baseline model and benchmark dataset for 3D universal lesion segmentation in computed tomography
    de Grauw, M. J. J.
    Scholten, E. Th.
    Smit, E. J.
    Rutten, M. J. C. M.
    Prokop, M.
    van Ginneken, B.
    Hering, A.
    MEDICAL IMAGE ANALYSIS, 2025, 102
  • [2] AeroPath: An airway segmentation benchmark dataset with challenging pathology and baseline method
    Stoverud, Karen-Helene
    Bouget, David
    Pedersen, Andre
    Leira, Hakon Olav
    Amundsen, Tore
    Lango, Thomas
    Hofstad, Erlend Fagertun
    PLOS ONE, 2024, 19 (10):
  • [3] Camouflaged Instance Segmentation In-the-Wild: Dataset, Method, and Benchmark Suite
    Trung-Nghia Le
    Cao, Yubo
    Tan-Cong Nguyen
    Minh-Quan Le
    Khanh-Duy Nguyen
    Thanh-Toan Do
    Minh-Triet Tran
    Nguyen, Tam, V
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 287 - 300
  • [4] MinneApple: A Benchmark Dataset for Apple Detection and Segmentation
    Hani, Nicolai
    Roy, Pravakar
    Isler, Volkan
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) : 852 - 858
  • [5] Semantic Segmentation of Underwater Imagery: Dataset and Benchmark
    Islam, Md Jahidul
    Edge, Chelsey
    Xiao, Yuyang
    Luo, Peigen
    Mehtaz, Muntaqim
    Morse, Christopher
    Enan, Sadman Sakib
    Sattar, Junaed
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 1769 - 1776
  • [6] Feature Library: A Benchmark for Cervical Lesion Segmentation
    Li, Yuexiang
    Chen, Jiawei
    Ma, Kai
    Zheng, Yefeng
    INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2021, 2021, 12729 : 440 - 451
  • [7] Multispectral Semantic Segmentation for UAVs: A Benchmark Dataset and Baseline
    Li, Qiusheng
    Yuan, Hang
    Fu, Tianning
    Yu, Zhibin
    Zheng, Bing
    Chen, Shuguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [8] A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation
    Perazzi, F.
    Pont-Tuset, J.
    McWilliams, B.
    Van Gool, L.
    Gross, M.
    Sorkine-Hornung, A.
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 724 - 732
  • [9] A Benchmark Kannada Handwritten Document Dataset and its Segmentation
    Alaei, Alireza
    Nagabhushan, P.
    Pal, Umapada
    11TH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR 2011), 2011, : 141 - 145
  • [10] Multispectral Video Semantic Segmentation: A Benchmark Dataset and Baseline
    Ji, Wei
    Li, Jingjing
    Bian, Cheng
    Zhou, Zongwei
    Zhao, Jiaying
    Yuille, Alan
    Cheng, Li
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 1094 - 1104