Ideal structure of rings of analytic functions with non-Archimedean metrics

被引:0
|
作者
Bruno, Nicholas [1 ]
机构
[1] Ohio State Univ, 281 W Lane Ave, Columbus, OH 43210 USA
基金
欧盟地平线“2020”;
关键词
Deals; multiplicative ideal; prime ideal; maximal ideal; p-adic; non-Archimedean; ultrametric; ultrafilter; power series; Laurent series; Krull dimension; entire functions; Bezout; generators;
D O I
10.1142/S0219498823500111
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The work of Helmer [Divisibility properties of integral functions, Duke Math. J. 6(2) (1940) 345-356] applied algebraic methods to the field of complex analysis when he proved the ring of entire functions on the complex plane is a Bezout domain (i.e. all finitely generated ideals are principal). This inspired the work of Henriksen [On the ideal structure of the ring of entire functions, Pacific J. Math. 2(2) (1952) 179-184. On the prime ideals of the ring of entire functions, Pacific J. Math. 3(4) (1953) 711-720] who proved a correspondence between the maximal ideals within the ring of entire functions and ultrafilters on sets of zeroes as well as a correspondence between the prime ideals and growth rates on the multiplicities of zeroes. We prove analogous results on rings of analytic functions in the non-Archimedean context: all finitely generated ideals in the ring of analytic functions on an annulus of a characteristic zero non-Archimedean field are two-generated but not guaranteed to be principal. We also prove the maximal and prime ideal structure in the non-Archimedean context is similar to that of the ordinary complex numbers; however, the methodology has to be significantly altered to account for the failure of Weierstrass factorization on balls of finite radius in fields which are not spherically complete, which was proven by Lazard [Les zeros d'une function analytique d'une variable sur un corps value complet, Publ. Math. l'IHES 14(1) (1942) 47-75].
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Local monodromy in non-archimedean analytic geometry
    Ramero, L
    PUBLICATIONS MATHEMATIQUES DE L'HES, NO 102, 2005, 102 (102): : 167 - 280
  • [22] Affine structures and non-archimedean analytic spaces
    Kontsevich, M
    Soibelman, Y
    UNITY OF MATHEMATICS: IN HONOR OF THE NINETIETH BIRTHDAY OF I.M. GELFAND, 2006, 244 : 321 - +
  • [23] DERIVED NON-ARCHIMEDEAN ANALYTIC HILBERT SPACE
    Antonio, Jorge
    Porta, Mauro
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2022, 21 (01) : 335 - 366
  • [24] Non-Archimedean and tropical theta functions
    Foster, Tyler
    Rabinoff, Joseph
    Shokrieh, Farbod
    Soto, Alejandro
    MATHEMATISCHE ANNALEN, 2018, 372 (3-4) : 891 - 914
  • [25] Weight functions on non-Archimedean analytic spaces and the Kontsevich-Soibelman skeleton
    Mustata, Mircea
    Nicaise, Johannes
    ALGEBRAIC GEOMETRY, 2015, 2 (03): : 365 - 404
  • [26] Vanishing cycles for non-Archimedean analytic spaces
    Berkovich, VG
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (04) : 1187 - 1209
  • [27] Gromov compactness in non-archimedean analytic geometry
    Yu, Tony Yue
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 741 : 179 - 210
  • [28] Tropical varieties for non-archimedean analytic spaces
    Gubler, Walter
    INVENTIONES MATHEMATICAE, 2007, 169 (02) : 321 - 376
  • [29] Non-Archimedean and tropical theta functions
    Tyler Foster
    Joseph Rabinoff
    Farbod Shokrieh
    Alejandro Soto
    Mathematische Annalen, 2018, 372 : 891 - 914
  • [30] SPACES OF NON-ARCHIMEDEAN VALUED FUNCTIONS
    KATSARAS, AK
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1986, 5B (02): : 603 - 621