Ideal structure of rings of analytic functions with non-Archimedean metrics

被引:0
|
作者
Bruno, Nicholas [1 ]
机构
[1] Ohio State Univ, 281 W Lane Ave, Columbus, OH 43210 USA
基金
欧盟地平线“2020”;
关键词
Deals; multiplicative ideal; prime ideal; maximal ideal; p-adic; non-Archimedean; ultrametric; ultrafilter; power series; Laurent series; Krull dimension; entire functions; Bezout; generators;
D O I
10.1142/S0219498823500111
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The work of Helmer [Divisibility properties of integral functions, Duke Math. J. 6(2) (1940) 345-356] applied algebraic methods to the field of complex analysis when he proved the ring of entire functions on the complex plane is a Bezout domain (i.e. all finitely generated ideals are principal). This inspired the work of Henriksen [On the ideal structure of the ring of entire functions, Pacific J. Math. 2(2) (1952) 179-184. On the prime ideals of the ring of entire functions, Pacific J. Math. 3(4) (1953) 711-720] who proved a correspondence between the maximal ideals within the ring of entire functions and ultrafilters on sets of zeroes as well as a correspondence between the prime ideals and growth rates on the multiplicities of zeroes. We prove analogous results on rings of analytic functions in the non-Archimedean context: all finitely generated ideals in the ring of analytic functions on an annulus of a characteristic zero non-Archimedean field are two-generated but not guaranteed to be principal. We also prove the maximal and prime ideal structure in the non-Archimedean context is similar to that of the ordinary complex numbers; however, the methodology has to be significantly altered to account for the failure of Weierstrass factorization on balls of finite radius in fields which are not spherically complete, which was proven by Lazard [Les zeros d'une function analytique d'une variable sur un corps value complet, Publ. Math. l'IHES 14(1) (1942) 47-75].
引用
收藏
页数:27
相关论文
共 50 条
  • [1] DISCRETE RINGS IN NON-ARCHIMEDEAN ANALYTIC GEOMETRY
    KIEHL, R
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1969, 234 : 12 - &
  • [2] On the structure of non-archimedean analytic curves
    Baker, Matthew
    Payne, Sam
    Rabinoff, Joseph
    TROPICAL AND NON-ARCHIMEDEAN GEOMETRY, 2013, 605 : 93 - +
  • [3] Discriminants of polynomials in the Archimedean and non-Archimedean metrics
    V. Bernik
    N. Budarina
    H. O’Donnell
    Acta Mathematica Hungarica, 2018, 154 : 265 - 278
  • [4] Discriminants of polynomials in the Archimedean and non-Archimedean metrics
    Bernik, V.
    Budarina, N.
    O'Donnell, H.
    ACTA MATHEMATICA HUNGARICA, 2018, 154 (02) : 265 - 278
  • [5] On Topological Extensions of Archimedean and non-Archimedean Rings
    Khrennikov, Andrei Yu
    van der Walt, Jan Harm
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2011, 3 (04) : 326 - 333
  • [6] On topological extensions of Archimedean and non-Archimedean rings
    Andrei Yu. Khrennikov
    Jan Harm Van der Walt
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2011, 3 (4) : 326 - 333
  • [7] Non-Archimedean Analytic Spaces
    Werner A.
    Jahresbericht der Deutschen Mathematiker-Vereinigung, 2013, 115 (1) : 3 - 20
  • [8] NON-ARCHIMEDEAN HARMONIC-ANALYSIS AND ANALYTIC-FUNCTIONS
    WEISMAN, CS
    MATHEMATISCHE ANNALEN, 1974, 210 (03) : 227 - 231
  • [9] NON-ARCHIMEDEAN HARMONIC-ANALYSIS AND ANALYTIC-FUNCTIONS
    WEISMAN, CS
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A58 - A58
  • [10] Derived non-archimedean analytic spaces
    Mauro Porta
    Tony Yue Yu
    Selecta Mathematica, 2018, 24 : 609 - 665