q-SOBOLEV ORTHOGONALITY OF THE q-LAGUERRE POLYNOMIALS {Ln(-N)(.; q)}n=0∞ FOR POSITIVE INTEGERS N

被引:2
|
作者
Moreno, Samuel G. [1 ]
Garcia-Caballero, Esther M. [1 ]
机构
[1] Univ Jaen, Dept Matemat, Jaen 23071, Spain
关键词
non-standard orthogonality; q-Laguerre polynomials; basic hypergeometric series;
D O I
10.4134/JKMS.2011.48.5.913
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The family of q-Laguerre polynomials {L-n((alpha))(.; q)}(n=0)(infinity)is usually defined for 0 < q < 1 and alpha > -1. We extend this family to a new one in which arbitrary complex values of the parameter a are allowed. These so-called generalized q-Laguerre polynomials fulfil the same three term recurrence relation as the original ones, but when the parameter a is a negative integer, no orthogonality property can be deduced from Favard's theorem. In this work we introduce non-standard inner products involving q-derivatives with respect to which the generalized q-Laguerre polynomials {L-n((-N))(.; q)}(n=0)(infinity), for positive integers N, become orthogonal.
引用
收藏
页码:913 / 926
页数:14
相关论文
共 50 条