Low-temperature steam reforming of phenol for hydrogen production over Co/Al2O3-ash catalysts

被引:10
|
作者
Li, Pan [1 ]
Li, Xinbao [1 ]
Wang, Yang [1 ]
Shen, Pengfei [1 ]
Zhu, Xinbo [1 ]
Zhu, Yingying [1 ]
Wu, Zan [2 ,3 ]
机构
[1] Ningbo Univ, Fac Maritime & Transportat, Ningbo 315211, Peoples R China
[2] Zhejiang Univ, Coll Elect Engn, Hangzhou 310027, Peoples R China
[3] ZJU Hangzhou Global Sci & Technol Innovat Ctr, Hangzhou 311200, Peoples R China
关键词
Hydrogen; Phenol; Steam reforming; Coal ash; Low temperature; ACETIC-ACID; BIO-OIL; MODEL COMPOUNDS; SUPPORTED FE; BIOMASS TAR; NI; ASH; CO; GLYCEROL; HYDROXIDE;
D O I
10.1016/j.apcatb.2022.121691
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A low-cost, high-performance catalyst for phenol steam reforming (PSR) at low temperature was prepared by introducing waste coal ash into Co/Al2O3. The optimized content of coal ash in the catalyst were ranged from 50 to 65 wt%, presenting over 97% phenol conversion and 92% H-2 yield at low temperature of 450 C. The stability for the best catalyst with an ash content of 50 wt% exceeded 85 h. Two-step reduction of Co3O4 to Co0 via CoO was identified by in-situ XRD. DFT calculations showed that phenol adsorption and decomposition were preferred on the FeCo bimetal surface rather than the single Co surface. H2O adsorption and dissociation fascinated on the CaO incorporated Al2O3 surface. Both Fe and Ca in the coal ash improved the catalyst performance in PSR at low temperature. This work gives an opportunity to solve the drawbacks of high reaction -temperature and low catalyst-stability in PSR, and furthermore benefits to get a deep insight into the reaction mechanism of PSR over the catalyst.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Hydrogen Production by Steam Reforming of Ethanol Over Mesoporous Ni–Al2O3–ZrO2 Catalysts
    Ji Hwan Song
    Seung Ju Han
    In Kyu Song
    Catalysis Surveys from Asia, 2017, 21 : 114 - 129
  • [22] Study of Co/CeO2-γ-Al2O3 catalysts for steam and oxidative reforming of ethanol for hydrogen production
    Maia, Thaisa A.
    Assaf, Jose M.
    Assaf, Elisabete M.
    FUEL PROCESSING TECHNOLOGY, 2014, 128 : 134 - 145
  • [23] CO low-temperature oxidation over Au/MOx/Al2O3 catalysts
    Wang, DH
    Hao, ZP
    Kang, SF
    Cheng, DY
    Shi, XC
    CHINESE JOURNAL OF CATALYSIS, 2002, 23 (06) : 489 - 490
  • [24] CO Low-Temperature Oxidation over Au/MOx/Al2O3 Catalysts
    WANG Donghui 1
    2 Research Institute of Chemical Defence
    催化学报, 2002, (06) : 489 - 490
  • [25] Low temperature steam reforming of bio-ethanol over Ni/CuO-Al2O3 catalysts
    Venugopal, A.
    Sudhakar, M.
    Kishore, R.
    Sarkari, Reema
    Ashok, J.
    Noronha, F. B.
    de Lima, S. M.
    Padmasri, A. Hari
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2010, 7 (9-12) : 1188 - 1203
  • [26] Reaction pathways of phenol steam reforming over Rh and Ni-Co based catalysts supported on γ-Al2O3
    Zhurka, Marinela D.
    Mccue, Alan J.
    Kechagiopoulos, Panagiotis N.
    FUEL, 2024, 364
  • [27] Hydrogen production from glycerol steam reforming over Ni/La/Co/Al2O3 catalyst
    Fu Ming
    Xu Qingli
    Qi Wei
    Zhang Zhikai
    Zhang Suping
    Yan Yongjie
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2016, 38 (14) : 2128 - 2134
  • [28] Hydrogen Production Via Ethanol Steam Reforming Over Ni/Al2O3 Catalysts: Effect of Ni Loading
    Bshish, Ahmed
    Yaakob, Zahira
    Ebshish, Ali
    Alhasan, Fatah H.
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2014, 136 (01):
  • [29] Kinetics of Glycerol Steam Reforming for Hydrogen Production Over Ni-Fe-Ce/Al2O3 Catalysts
    Ryoo, HeeKyoung
    Go, Gwang-Sub
    Ma, Byung Chol
    Kim, Young-Chu
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (02) : 1070 - 1073
  • [30] Catalysts research for hydrogen production from steam reforming of ethanol over Ni-Fe/γ-Al2O3
    School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081, China
    不详
    Gongneng Cailiao, 2009, 11 (1867-1869+1872):