A note on efficient simulation of multidimensional spatial autoregressive processes

被引:0
|
作者
Otto, Philipp [1 ]
机构
[1] European Univ Viadrina, Dept Stat, Frankfurt, Germany
关键词
Curse of dimensionality; Efficient simulation in R; Spatial autoregressive model; MODELS;
D O I
10.1080/03610918.2015.1122050
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In applications of spatial statistics, it is necessary to compute the product of some matrix W of spatial weights and a vector y of observations. The weighting matrix often needs to be adapted to the specific problems, such that the computation of Wy cannot necessarily be done with available R-packages. Hence, this article suggests one possibility treating such issues. The proposed technique avoids the computation of the matrix product by calculating each entry of Wy separately. Initially, a specific spatial autoregressive process is introduced. The performance of the proposed program is briefly compared to a basic program using the matrix multiplication.
引用
收藏
页码:4547 / 4558
页数:12
相关论文
共 50 条
  • [31] EFFICIENT CONSTRUCTION OF CANONICAL LADDER FORMS FOR VECTOR AUTOREGRESSIVE PROCESSES
    HADIDI, MT
    MORF, M
    PORAT, B
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (06) : 1222 - 1233
  • [32] EFFICIENT ESTIMATION OF PARAMETERS FOR NON-GAUSSIAN AUTOREGRESSIVE PROCESSES
    SENGUPTA, D
    KAY, S
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1989, 37 (06): : 785 - 794
  • [33] Accurate and efficient simulation of transport in multidimensional flow
    Latorre, B.
    Garcia-Navarro, P.
    Murillo, J.
    Burguete, J.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (04) : 405 - 431
  • [34] Autoregressive to anything: Time-series input processes for simulation
    Cario, MC
    Nelson, BL
    OPERATIONS RESEARCH LETTERS, 1996, 19 (02) : 51 - 58
  • [35] Autoregressive to anything: time-series input processes for simulation
    Ohio State Univ, Columbus, United States
    Oper Res Lett, 2 (51-58):
  • [36] Prediction in first order autoregressive processes, a small sample simulation
    Corcuera, Jose M.
    American Journal of Mathematical and Management Sciences, 2001, 21 (1-2) : 125 - 143
  • [37] Applicability of the computation method for spatial coherence functions based on the multidimensional autoregressive (AR) model
    Wen P.
    Ji K.
    Wen R.
    Ren Y.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (02): : 140 - 150
  • [38] Efficient precision simulation of processes
    Bothmann, Enrico
    Childers, Taylor
    Guetschow, Christian
    Hoeche, Stefan
    Hovland, Paul
    Isaacson, Joshua
    Knobbe, Max
    Latham, Robert
    PHYSICAL REVIEW D, 2024, 109 (01)
  • [39] A NOTE ON AUTOREGRESSIVE MODELING
    POSKITT, DS
    ECONOMETRIC THEORY, 1994, 10 (05) : 884 - 899
  • [40] Autoregressive processes
    Brockwell P.J.
    Wiley Interdisciplinary Reviews: Computational Statistics, 2011, 3 (04) : 316 - 331