Stem radial CO2 conductance affects stem respiratory CO2 fluxes in ash and birch trees

被引:7
|
作者
Wang, Xiuwei [1 ]
Mao, Zijun [2 ]
McGuire, M. A. [3 ]
Teskey, R. O. [3 ]
机构
[1] Northeast Forestry Univ, Sch Forestry, Harbin 150040, Heilongjiang, Peoples R China
[2] Northeast Forestry Univ, Minist Educ, Key Lab Forest Plant Ecol, Harbin 150040, Heilongjiang, Peoples R China
[3] Univ Georgia, Warnell Sch Forestry & Nat Resources, Athens, GA 30606 USA
基金
中国国家自然科学基金;
关键词
Stem CO2 conductance; Stem respiration; Stem CO2 efflux; Transport flux; Stem temperature; Sap flow; Sap flux density; EXTERNAL FLUXES; EFFLUX; CARBON; DIFFUSION; GROWTH; OXYGEN; WATER; WOOD; SAP;
D O I
10.1007/s11676-018-0737-z
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
The CO2 released from respiring cells in woody tissues of trees can contribute to one of three fluxes: efflux to the atmosphere (E-A), internal xylem sap transport flux (F-T), and storage flux (S). Adding those fluxes together provides an estimate of actual stem respiration (R-S).We know that the relative proportion of CO2 in those fluxes varies greatly among tree species, but we do not yet have a clear understanding of the causes for this variation. One possible explanation is that species differ in stem radial CO2 conductance (g(c)). A high g(c) would favor the E-A pathway and a low g(c) would favor the F-T pathway. However, g(c) has only been measured once in situ and only in a single tree species. We measured g(c) using two methods in stems of Fraxinus mandshurica Rupr. (ash) and Betula platyphylla Suk. (birch) trees in situ, along with R-S, E-A, F-T and S. Stem radial CO2 conductance was substantially greater in ash trees than in birch trees. Corresponding to that finding, in ash trees over 24h, E-A constituted the entire flux of respired CO2, and F-T was negative, indicating that additional CO2, probably transported from the root system via the xylem, was also diffusing into the atmosphere. In ash trees, F-T was negative over the entire 24h, and this study represents the first time that has been reported. The addition of xylem-transported CO2 to E-A caused E-A to be 9% higher than the actual R-S over the diel measurement period. Birch trees, which had lower g(c), also had a more commonly seen pattern, with E-A accounting for about 80% of the CO2 released from local cell respiration and F-T accounting for the remainder. The inorganic carbon concentration in xylem sap was also lower in ash trees than in birch trees: 2.7 versus 5.3mmol L-1, respectively. Our results indicate that stem CO2 conductance could be a very useful measurement to help explain differences among species in the proportion of respired CO(2)that remains in the xylem or diffuses into the atmosphere.
引用
收藏
页码:21 / 29
页数:9
相关论文
共 50 条
  • [41] CO2 FLUXES IN SUB-ANTARCTIC AREAS FROM CO2/RADON CORRELATIONS
    GAUDRY, A
    POLIAN, G
    MONFRAY, P
    ARDOUIN, B
    LAMBERT, G
    CHEMICAL GEOLOGY, 1988, 70 (1-2) : 98 - 98
  • [42] Global CO2 fluxes estimated from GOSAT retrievals of total column CO2
    Basu, S.
    Guerlet, S.
    Butz, A.
    Houweling, S.
    Hasekamp, O.
    Aben, I.
    Krummel, P.
    Steele, P.
    Langenfelds, R.
    Torn, M.
    Biraud, S.
    Stephens, B.
    Andrews, A.
    Worthy, D.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (17) : 8695 - 8717
  • [43] Light and CO2 do not affect the mesophyll conductance to CO2 diffusion in wheat leaves
    Tazoe, Youshi
    von Caemmerer, Susanne
    Badger, Murray R.
    Evans, John R.
    JOURNAL OF EXPERIMENTAL BOTANY, 2009, 60 (08) : 2291 - 2301
  • [44] Estimation of space heating CO2 emissions based only on CO2 fluxes observations
    Goret, Marine
    Masson, Valery
    Moine, Marie-Pierre
    Maurel, William
    Legain, Dominique
    Pigeon, Gregoire
    URBAN CLIMATE, 2025, 59
  • [45] Transport of root-respired CO2 via the transpiration stream affects aboveground carbon assimilation and CO2 efflux in trees
    Bloemen, Jasper
    McGuire, Mary Anne
    Aubrey, Doug P.
    Teskey, Robert O.
    Steppe, Kathy
    NEW PHYTOLOGIST, 2013, 197 (02) : 555 - 565
  • [46] Differences between tree stem CO2 efflux and O2 influx rates cannot be explained by internal CO2 transport or storage in large beech trees
    Helm, Juliane
    Salomon, Roberto L.
    Hilman, Boaz
    Muhr, Jan
    Knohl, Alexander
    Steppe, Kathy
    Gibon, Yves
    Cassan, Cedric
    Hartmann, Henrik
    PLANT CELL AND ENVIRONMENT, 2023, 46 (09): : 2680 - 2693
  • [47] Drought and the diurnal patterns of stem CO2 efflux and xylem CO2 concentration in young oak (Quercus robur)
    Saveyn, An
    Steppe, Kathy
    Lemeur, Raoul
    TREE PHYSIOLOGY, 2007, 27 (03) : 365 - 374
  • [48] Stem CO2 efflux and its contribution to ecosystem CO2 efflux decrease with drought in a Mediterranean forest stand
    Rodriguez-Calcerrada, Jesus
    Martin-StPaul, Nicolas K.
    Lempereur, Morine
    Ourcival, Jean-Marc
    del Rey, Maria del Carmen
    Joffre, Richard
    Rambal, Serge
    AGRICULTURAL AND FOREST METEOROLOGY, 2014, 195 : 61 - 72
  • [49] RESPIRATORY PATTERN AND RESPIRATORY RESPONSE TO CO2
    SCHAEFER, KE
    JOURNAL OF APPLIED PHYSIOLOGY, 1958, 13 (01) : 1 - 14
  • [50] LEAF AND STEM CO2 UPTAKE IN THE 3 SUBFAMILIES OF THE CACTACEAE
    NOBEL, PS
    HARTSOCK, TL
    PLANT PHYSIOLOGY, 1986, 80 (04) : 913 - 917