Generalized principle of corresponding states and the scale invariant mean-field approach

被引:17
|
作者
Bulavin, L. A. [1 ]
Kulinskii, V. L. [2 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Dept Mol Phys, UA-03022 Kiev, Ukraine
[2] Odessa Natl Univ, Dept Theoret Phys, UA-65026 Odessa, Ukraine
来源
JOURNAL OF CHEMICAL PHYSICS | 2010年 / 133卷 / 13期
关键词
VAPOR COEXISTENCE CURVES; ZENO-LINE; LIQUID; BEHAVIOR; EQUATION; FLUIDS; MODEL;
D O I
10.1063/1.3496468
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper we apply the relations between the critical points of the Lennard-Jones fluids and lattice gas model found in [V. L. Kulinskii, J. Phys. Chem. B 114, 2852 (2010)] to other short-ranged potentials like Buckingham and the Mie-potentials. The estimates for the corresponding critical point loci correlate quite satisfactory with the available numerical data for these potentials. The explanation for the correlation between the value of the second virial coefficient at the critical temperature and the particle volume found in [G. A. Vliegenthart and H. N. W. Lekkerkerker, J. Chem. Phys. 112, 5364 (2000)] is proposed. The connection of the stability of the liquid phase with the short range character of the potentials is discussed on the basis of the global isomorphism approach. (C) 2010 American Institute of Physics. [doi:10.1063/1.3496468]
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Pseudogaps in strongly correlated metals: A generalized dynamical mean-field theory approach
    Sadovskii, MV
    Nekrasov, IA
    Kuchinskii, EZ
    Pruschke, T
    Anisimov, VI
    PHYSICAL REVIEW B, 2005, 72 (15)
  • [22] A Stochastic Maximum Principle for General Mean-Field Systems
    Rainer Buckdahn
    Juan Li
    Jin Ma
    Applied Mathematics & Optimization, 2016, 74 : 507 - 534
  • [23] Minimum Principle for Indefinite Mean-Field Free Energies
    Gartland, Eugene C., Jr.
    Virga, Epifanio G.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 196 (01) : 143 - 189
  • [24] A Maximum Principle for Mean-Field SDEs with Time Change
    Giulia Di Nunno
    Hannes Haferkorn
    Applied Mathematics & Optimization, 2017, 76 : 137 - 176
  • [25] Minimum Principle for Indefinite Mean-Field Free Energies
    Eugene C. Gartland
    Epifanio G. Virga
    Archive for Rational Mechanics and Analysis, 2010, 196 : 143 - 189
  • [26] A Maximum Principle for Mean-Field SDEs with Time Change
    Di Nunno, Giulia
    Haferkorn, Hannes
    APPLIED MATHEMATICS AND OPTIMIZATION, 2017, 76 (01): : 137 - 176
  • [27] STOCHASTIC MAXIMUM PRINCIPLE FOR WEIGHTED MEAN-FIELD SYSTEM
    Tang, Yanyan
    Xiong, Jie
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (05): : 1039 - 1053
  • [28] A Stochastic Maximum Principle for General Mean-Field Systems
    Buckdahn, Rainer
    Li, Juan
    Ma, Jin
    APPLIED MATHEMATICS AND OPTIMIZATION, 2016, 74 (03): : 507 - 534
  • [29] THE GIBBS VARIATIONAL PRINCIPLE FOR INHOMOGENEOUS MEAN-FIELD SYSTEMS
    RAGGIO, GA
    WERNER, RF
    HELVETICA PHYSICA ACTA, 1991, 64 (05): : 633 - 667
  • [30] A MEAN-FIELD APPROACH TO ANDERSON LOCALIZATION
    SORNETTE, D
    SOUILLARD, B
    EUROPHYSICS LETTERS, 1990, 13 (01): : 7 - 12