Generalized principle of corresponding states and the scale invariant mean-field approach

被引:17
|
作者
Bulavin, L. A. [1 ]
Kulinskii, V. L. [2 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Dept Mol Phys, UA-03022 Kiev, Ukraine
[2] Odessa Natl Univ, Dept Theoret Phys, UA-65026 Odessa, Ukraine
来源
JOURNAL OF CHEMICAL PHYSICS | 2010年 / 133卷 / 13期
关键词
VAPOR COEXISTENCE CURVES; ZENO-LINE; LIQUID; BEHAVIOR; EQUATION; FLUIDS; MODEL;
D O I
10.1063/1.3496468
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper we apply the relations between the critical points of the Lennard-Jones fluids and lattice gas model found in [V. L. Kulinskii, J. Phys. Chem. B 114, 2852 (2010)] to other short-ranged potentials like Buckingham and the Mie-potentials. The estimates for the corresponding critical point loci correlate quite satisfactory with the available numerical data for these potentials. The explanation for the correlation between the value of the second virial coefficient at the critical temperature and the particle volume found in [G. A. Vliegenthart and H. N. W. Lekkerkerker, J. Chem. Phys. 112, 5364 (2000)] is proposed. The connection of the stability of the liquid phase with the short range character of the potentials is discussed on the basis of the global isomorphism approach. (C) 2010 American Institute of Physics. [doi:10.1063/1.3496468]
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Stochastic Maximum Principle for Generalized Mean-Field Delay Control Problem
    Hancheng Guo
    Jie Xiong
    Jiayu Zheng
    Journal of Optimization Theory and Applications, 2024, 201 : 352 - 377
  • [2] Generalized dynamic programming principle and sparse mean-field control problems
    Cavagnari, Giulia
    Marigonda, Antonio
    Piccoli, Benedetto
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 481 (01)
  • [3] Stochastic Maximum Principle for Generalized Mean-Field Delay Control Problem
    Guo, Hancheng
    Xiong, Jie
    Zheng, Jiayu
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 201 (01) : 352 - 377
  • [4] Mean-Field Pontryagin Maximum Principle
    Bongini, Mattia
    Fornasier, Massimo
    Rossi, Francesco
    Solombrino, Francesco
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 175 (01) : 1 - 38
  • [5] Mean-Field Pontryagin Maximum Principle
    Mattia Bongini
    Massimo Fornasier
    Francesco Rossi
    Francesco Solombrino
    Journal of Optimization Theory and Applications, 2017, 175 : 1 - 38
  • [6] A measure theoretical approach to the mean-field maximum principle for training NeurODEs
    Bonnet, Benoit
    Cipriani, Cristina
    Fornasier, Massimo
    Huang, Hui
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 227
  • [7] Generalized thermostatistics and mean-field theory
    Naudts, J
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 332 : 279 - 300
  • [8] A Maximum Principle for SDEs of Mean-Field Type
    Andersson, Daniel
    Djehiche, Boualem
    APPLIED MATHEMATICS AND OPTIMIZATION, 2011, 63 (03): : 341 - 356
  • [9] Stochastic maximum principle in the mean-field controls
    Li, Juan
    AUTOMATICA, 2012, 48 (02) : 366 - 373
  • [10] A Maximum Principle for SDEs of Mean-Field Type
    Daniel Andersson
    Boualem Djehiche
    Applied Mathematics & Optimization, 2011, 63 : 341 - 356