Rational solutions of the classical Boussinesq-Burgers system

被引:26
|
作者
Li, Ming [1 ,2 ,3 ]
Hu, Wenkai [1 ]
Wu, Chengfa [1 ]
机构
[1] Shenzhen Univ, Inst Adv Study, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Key Lab Optoelect Devices & Syst, Minist Educ, Shenzhen 518060, Guangdong, Peoples R China
[3] Shenzhen Univ, Coll Optoelect Engn, Shenzhen 518060, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Rational solutions; Classical Boussinesq-Burgers system; Bilinear method; KP hierarchy reduction method; DARBOUX TRANSFORMATIONS; MULTISOLITON SOLUTIONS; SOLITON INTERACTION; BILINEAR FORM; ROGUE WAVES; DYNAMICS; EQUATION; PLASMA;
D O I
10.1007/s11071-018-4424-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We study rational solutions of the classical Boussinesq-Burgers (CBB) system which describes the propagation of shallow water waves. The main tools applied in this work to derive these solutions are the bilinear method and the Kadomtsev-Petviashvili hierarchy reduction technique. The solutions are given in terms of determinants whose matrix elements are related to Schur polynomials and have simple algebraic expressions. Moreover, the dynamics of these rational solutions are investigated analytically and graphically. For different values of the parameter coming from the CBB system, the solutions may describe the interaction of double-peak (M-shape) waves or single-peak waves. It is also shown that, depending on the choices of free parameters in the solutions, the maximum amplitude of the interaction wave could be higher or lower than the amplitudes before collision. In addition, some of the rational solutions may blow up to infinity at finite time under special choices of parameters.
引用
收藏
页码:1291 / 1302
页数:12
相关论文
共 50 条
  • [31] Some Exact Solutions and Conservation Laws of the Coupled Time-Fractional Boussinesq-Burgers System
    Shi, Dandan
    Zhang, Yufeng
    Liu, Wenhao
    Liu, Jiangen
    SYMMETRY-BASEL, 2019, 11 (01):
  • [32] New explicit exact solutions of one type of generalized Boussinesq equations and the Boussinesq-Burgers equation
    Gao Liang
    Xu Wei
    Tang Ya-Ning
    Shen Jian-Wei
    ACTA PHYSICA SINICA, 2007, 56 (04) : 1860 - 1869
  • [33] Exact solutions and bifurcations of the time-fractional coupled Boussinesq-Burgers equation
    Liu, Minyuan
    Xu, Hui
    Wang, Zenggui
    PHYSICA SCRIPTA, 2023, 98 (11)
  • [34] Dynamical Behavior of the Solutions of Coupled Boussinesq-Burgers Equations Occurring at the Seaside Beaches
    Kumar, Raj
    Pandey, Kripa Shankar
    Kumar, Avneesh
    BRAZILIAN JOURNAL OF PHYSICS, 2022, 52 (06)
  • [35] RATIONAL SOLUTIONS OF THE CLASSICAL BOUSSINESQ HIERARCHY
    LIU, QM
    HU, XB
    LI, Y
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (04): : 585 - 591
  • [36] Boussinesq-Burgers方程的Darboux变换
    刘玉晓
    平顶山工学院学报, 2005, (02) : 57 - 60
  • [37] NUMERICAL INVESTIGATIONS ON THE PHYSICAL DYNAMICS OF THE COUPLED FRACTIONAL BOUSSINESQ-BURGERS SYSTEM
    Abu Irwaq, I.
    Alquran, M.
    Jaradat, I
    Noorani, M. S. M.
    Momani, S.
    Baleanu, D.
    ROMANIAN JOURNAL OF PHYSICS, 2020, 65 (5-6):
  • [38] Lie group analysis for a higher-order Boussinesq-Burgers system
    Liu, Fei-Yan
    Gao, Yi-Tian
    APPLIED MATHEMATICS LETTERS, 2022, 132
  • [39] 2N + 1-soliton Solutions of Boussinesq-Burgers Equation
    Li Qian
    Xia Tie-chen
    Chen Deng-yuan
    Communications in Mathematical Research, 2017, 33 (01) : 26 - 32
  • [40] CTE method and exact solutions for a high-order boussinesq-burgers equation
    Zuo, Jinming
    IAENG International Journal of Applied Mathematics, 2020, 50 (02): : 440 - 444