A Schwarz waveform relaxation method for time-dependent space fractional Schrodinger/heat equations

被引:3
|
作者
Antoine, Xavier [1 ]
Lorin, Emmanuel [2 ,3 ]
机构
[1] Univ Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[3] Univ Montreal, Ctr Rech Math, Montreal, PQ H3T 1J4, Canada
关键词
Space fractional Schr?dinger equation; Space fractional heat equation; Fractional Laplacian; Domain decomposition method; Schwarz relaxation waveform algorithm; DOMAIN DECOMPOSITION METHODS; LINEAR SCHRODINGER; DIFFERENCE SCHEME; NUMERICAL-METHODS; GROUND-STATES; DYNAMICS; APPROXIMATION; COLLOCATION; DIFFUSION; BEAMS;
D O I
10.1016/j.apnum.2022.07.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is dedicated to the derivation and analysis of a Schwarz waveform relaxation domain decomposition method for solving time-dependent linear/nonlinear space fractional Schrodinger and heat equations. Along with the details of the derivation of the method and some mathematical properties, we also propose some illustrating numerical experiments and conjectures on the rate of convergence of the method. (C) 2022 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:248 / 264
页数:17
相关论文
共 50 条
  • [21] On Magnus integrators for time-dependent Schrodinger equations
    Hochbruck, M
    Lubich, C
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (03) : 945 - 963
  • [22] Separation of variables in time-dependent Schrodinger equations
    Zhalij, A
    Zhdanov, R
    SUPERINTEGRABILITY IN CLASSICAL AND QUANTUM SYSTEMS, 2004, 37 : 317 - 332
  • [23] Schwarz waveform relaxation method for one-dimensional Schrodinger equation with general potential
    Besse, Christophe
    Xing, Feng
    NUMERICAL ALGORITHMS, 2017, 74 (02) : 393 - 426
  • [24] Fractional time-dependent Schrodinger equation on the Heisenberg group
    Urban, Roman
    Zienkiewicz, Jacek
    MATHEMATISCHE ZEITSCHRIFT, 2008, 260 (04) : 931 - 948
  • [25] An analysis of Schwarz waveform relaxation domain decomposition methods for the imaginary-time linear Schrodinger and Gross-Pitaevskii equations
    Antoine, X.
    Lorin, E.
    NUMERISCHE MATHEMATIK, 2017, 137 (04) : 923 - 958
  • [26] Dispersive estimates for time and space fractional Schrodinger equations
    Su, Xiaoyan
    Zhao, Shiliang
    Li, Miao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (10) : 7933 - 7942
  • [27] Waveform relaxation method for fractional differential-algebraic equations
    Ding, Xiao-Li
    Jiang, Yao-Lin
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (03) : 585 - 604
  • [28] Waveform relaxation method for fractional differential-algebraic equations
    Xiao-Li Ding
    Yao-Lin Jiang
    Fractional Calculus and Applied Analysis, 2014, 17 : 585 - 604
  • [29] Time dependent solutions for fractional coupled Schrodinger equations
    Lenzi, E. K.
    de Castro, A. S. M.
    Mendes, R. S.
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 346 : 622 - 632
  • [30] THE METHOD OF SPLITTING FOR SOLVING SYSTEMS OF TIME-DEPENDENT NONLINEAR EQUATIONS OF THE SCHRODINGER TYPE
    IVANAUSKAS, FF
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1989, 29 (06): : 160 - 166