On Y-coordinates of Pell equations which are Lucas numbers

被引:1
|
作者
Edjeou, Bilizimbeye [1 ]
Faye, Bernadette [2 ]
Gomez, Carlos A. [3 ]
Luca, Florian [4 ,5 ,6 ,7 ]
机构
[1] Univ Gaston Berger, Ecole Doctorale Sci & Technol, St Louis 234, Senegal
[2] Univ Gaston Berger, UFR SAT, St Louis 234, Senegal
[3] Univ Valle, Dept Matemat, Calle 13 100-00, Cali, Colombia
[4] Univ Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
[5] King Abdulaziz Univ, Res Grp Algebra Struct & Applicat, Jeddah, Saudi Arabia
[6] Max Planck Inst Software Syst, Saarbrucken, Germany
[7] Ctr Ciencias Matemat UNAM, Morelia, Michoacan, Mexico
来源
RAMANUJAN JOURNAL | 2022年 / 59卷 / 04期
关键词
Diophantine equations; Lucas sequence; Pell equation; LOGARITHMS; FORMS;
D O I
10.1007/s11139-022-00613-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let d >= 2 be an integer which is not a square. We show that if (L-n)(n >= 0) is the Lucas sequence and (X-m, Y-m)(m >= 1) is the mth solution of the Pell equation X-2 - dY(2) = +/- 1, then the equation Y-m = L-n has at most two positive integer solutions (m, n) except for d = 2 when it has the three solutions (m, n) = (1, 1), (2, 0), (5, 7).
引用
收藏
页码:1091 / 1136
页数:46
相关论文
共 50 条
  • [21] ON THE x-COORDINATES OF PELL EQUATIONS THAT ARE PRODUCTS OF TWO PELL NUMBERS
    Ddamulira, Mahadi
    Luca, Florian
    MATHEMATICA SLOVACA, 2024, 74 (01) : 41 - 56
  • [22] On the x-coordinates of Pell equations which are k-generalized Fibonacci numbers
    Ddamulira, Mahadi
    Luca, Florian
    JOURNAL OF NUMBER THEORY, 2020, 207 : 156 - 195
  • [23] The X-coordinates of Pell equations and Padovan numbers
    Rihane, Salah Eddine
    Hernane, Mohand Ouamar
    Togbe, Alain
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (01) : 207 - 223
  • [24] New recurrences on Pell numbers, Pell-Lucas numbers, Jacobsthal numbers, and Jacobsthal-Lucas numbers
    Celik, Songul
    Durukan, Inan
    Ozkan, Engin
    CHAOS SOLITONS & FRACTALS, 2021, 150
  • [25] PERFECT PELL AND PELL-LUCAS NUMBERS
    Bravo, Jhon J.
    Luca, Florian
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2019, 56 (04) : 381 - 387
  • [26] On Pell, Pell-Lucas, and balancing numbers
    Gül Karadeniz Gözeri
    Journal of Inequalities and Applications, 2018
  • [27] On X-coordinates of Pell equations which are repdigits
    Gomez, Carlos A.
    Luca, Florian
    Zottor, Faith Shadow
    RESEARCH IN NUMBER THEORY, 2020, 6 (04)
  • [28] On Generalized Pell and Pell-Lucas Numbers
    Trojnar-Spelina, Lucyna
    Wloch, Iwona
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A6): : 2871 - 2877
  • [29] On Pell, Pell-Lucas, and balancing numbers
    Gozeri, Gul Karadeniz
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [30] Pell and Pell-Lucas numbers with applications
    Hajnal, Peter
    ACTA SCIENTIARUM MATHEMATICARUM, 2016, 82 (3-4): : 695 - 696