Distinguished nilpotent orbits, Kostant pairs and normalizers of Lie algebras

被引:2
|
作者
Sirola, Boris [1 ]
机构
[1] Univ Zagreb, Dept Math, Zagreb 10000, Croatia
关键词
Semisimple Lie algebra; Cartan subalgebra; Root; Root system; Borel subalgebra; Pair of Lie algebras; Kostant pair; Normalizer; Self-normalizing subalgebra; Nilpotent element; Distinguished nilpotent element; Nilpotent orbit; REDUCTIVE SUBALGEBRAS; UNIPOTENT ELEMENTS; SUBGROUPS; VARIETIES; MODULES;
D O I
10.1016/j.jalgebra.2014.10.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A pair of Lie algebras (g, g(1)) will be called a Kostant pair if g is semisimple, g is reductive in g and the restriction of the Killing form B-g to g(1) is nondegenerate. We study the class of such (nonsymmetric) pairs and obtain some useful and new structural results. We study the structure of the normalizers N-g(g(1)), and as a consequence we obtain some corresponding worthy results about algebraic groups. In particular we consider an interesting case when g(1) is a distinguished sl(2)-subalgebra of g. Combined with the research due to V.L. Popov we observe that the notions of self-normalizing (reductive) subalgebras of a semisimple Lie algebra and projective self-dual algebraic subvarieties of the usual nilpotent cones are closely related. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:636 / 682
页数:47
相关论文
共 50 条
  • [1] ON DEGENERACY OF ORBITS OF NILPOTENT LIE ALGEBRAS
    Loboda, A., V
    Kaverina, V. K.
    UFA MATHEMATICAL JOURNAL, 2022, 14 (01): : 53 - 77
  • [2] Nilpotent pairs in semisimple Lie algebras and their characteristics
    Panyushev, DI
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2000, 2000 (01) : 1 - 21
  • [3] On the second cohomology of nilpotent orbits in exceptional Lie algebras
    Chatterjee, Pralay
    Maity, Chandan
    BULLETIN DES SCIENCES MATHEMATIQUES, 2017, 141 (01): : 10 - 24
  • [4] Homotopy type of the nilpotent orbits in classical Lie algebras
    Biswas, Indranil
    Chatterjee, Pralay
    Maity, Chandan
    KYOTO JOURNAL OF MATHEMATICS, 2023, 63 (04) : 851 - 891
  • [5] Nilpotent orbits and mixed gradings of semisimple Lie algebras
    Panyushev, Dmitri, I
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (05): : 1095 - 1114
  • [6] Nilpotent orbits in simple Lie algebras and their transverse Poisson structures
    Damianou, P. A.
    Sabourin, H.
    Vanhaecke, P.
    GEOMETRY AND PHYSICS XVI INTERNATIONAL FALL WORKSHOP, 2008, 1023 : 148 - +
  • [7] Lie superalgebras, Clifford algebras, induced modules and nilpotent orbits
    Musson, Ian M.
    ADVANCES IN MATHEMATICS, 2006, 207 (01) : 39 - 72
  • [8] Regular subalgebras and nilpotent orbits of real graded Lie algebras
    Dietrich, Heiko
    Faccin, Paolo
    de Graaf, Willem A.
    JOURNAL OF ALGEBRA, 2015, 423 : 1044 - 1079
  • [9] ON SEMIREGULAR NILPOTENT ORBITS IN SIMPLE LIE ALGEBRAS OF TYPE D
    Arbour, Benoit
    Dokovic, Dragomir Z.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2002, 1 (03) : 341 - 356
  • [10] COMPUTING WITH NILPOTENT ORBITS IN SIMPLE LIE ALGEBRAS OF EXCEPTIONAL TYPE
    de Graaf, Willem A.
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2008, 11 : 280 - 297