Unilateral problems for nonlinearly elastic plates and shallow shells

被引:2
|
作者
Gratie, L [1 ]
机构
[1] Dunarea de Jos Univ Galati, Fac Engn Braila, Braila 6100, Romania
关键词
topological degree; variational inequalities; generalized monotone operators; von Karman plates; nonlinearly elastic shallow shells; unilateral eigenvalue problem;
D O I
10.1177/108128650100600308
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using the topological degree for pseudo-monotone operators of type (S+), we establish a general existence result for variational inequalities of von Karman type, which model unilateral problems for nonlinearly elastic plates. Then, we give a reduced operatorial form of Marguerre-von Karman equations for nonlinearly elastic shallow shells and get a new existence result for this model.
引用
收藏
页码:343 / 355
页数:13
相关论文
共 50 条
  • [21] Polyconvexity and Existence Theorem for Nonlinearly Elastic Shells
    Sylvia Anicic
    Journal of Elasticity, 2018, 132 : 161 - 173
  • [22] Asymptotic Analysis of the Eversion of Nonlinearly Elastic Shells
    Stuart S. Antman
    Leonid S. Srubshchik
    Journal of Elasticity, 1998, 50 : 129 - 179
  • [23] An existence theorem for nonlinearly elastic 'flexural' shells
    Ciarlet, PG
    Coutand, D
    JOURNAL OF ELASTICITY, 1998, 50 (03) : 261 - 277
  • [24] Some geometrically nonlinear problems of deformation of inelastic plates and shallow shells
    Tsvelodub I.Yu.
    Journal of Applied Mechanics and Technical Physics, 2005, 46 (2) : 275 - 280
  • [25] Mixed functionals in the theory of nonlinearly elastic shells
    Maksimyuk, VA
    Chernyshenko, IS
    INTERNATIONAL APPLIED MECHANICS, 2004, 40 (11) : 1226 - 1262
  • [26] Mixed functionals in the theory of nonlinearly elastic shells
    V. A. Maksimyuk
    I. S. Chernyshenko
    International Applied Mechanics, 2004, 40 : 1226 - 1262
  • [27] ASYMPTOTIC ANALYSIS FOR NONLINEARLY ELASTIC FLEXURAL SHELLS
    LODS, V
    MIARA, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (08): : 1097 - 1102
  • [28] Mixed functionals in the theory of nonlinearly elastic shells
    Maksimyuk, V.A.
    Chernyshenko, I.S.
    Prikladnaya Mekhanika, 2004, 40 (11): : 45 - 84
  • [29] Polyconvexity and Existence Theorem for Nonlinearly Elastic Shells
    Anicic, Sylvia
    JOURNAL OF ELASTICITY, 2018, 132 (01) : 161 - 173
  • [30] Asymptotic analysis of the eversion of nonlinearly elastic shells
    Antman, SS
    Srubshchik, LS
    JOURNAL OF ELASTICITY, 1998, 50 (02) : 129 - 179