THE BELLOWS CONJECTURE FOR SMALL FLEXIBLE POLYHEDRA IN NON-EUCLIDEAN SPACES

被引:3
|
作者
Gaifullin, Alexander A. [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Gubkina Str 8, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
Flexible polyhedron; the bellows conjecture; simplicial collapse; analytic continuation; DIMENSIONS;
D O I
10.17323/1609-4514-2017-17-2-269-290
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The bellows conjecture claims that the volume of any flexible polyhedron of dimension 3 or higher is constant during the flexion. The bellows conjecture was proved for flexible polyhedra in Euclidean spaces R-n, n >= 3, and for bounded flexible polyhedra in odd-dimensional Lobachevsky spaces A(2m+1), m >= 1. Counterexamples to the bellows conjecture are known in all open hemispheres S-n, n >= 3. The aim of this paper is to prove that, nonetheless, the bellows conjecture is true for all flexible polyhedra in either S-n or A(n), n >= 3, with sufficiently small edge lengths.
引用
收藏
页码:269 / 290
页数:22
相关论文
共 50 条
  • [1] Volumes of Polyhedra in Non-Euclidean Spaces of Constant Curvature
    Krasnov V.A.
    Journal of Mathematical Sciences, 2022, 267 (5) : 554 - 670
  • [2] VOLUMES OF NON-EUCLIDEAN POLYHEDRA
    VINBERG, EB
    RUSSIAN MATHEMATICAL SURVEYS, 1993, 48 (02) : 15 - 45
  • [3] A Trick for Calculating Volumes of Non-Euclidean Polyhedra
    Krasnov, V. A.
    MATHEMATICAL NOTES, 2021, 109 (3-4) : 648 - 652
  • [4] A Trick for Calculating Volumes of Non-Euclidean Polyhedra
    V. A. Krasnov
    Mathematical Notes, 2021, 109 : 648 - 652
  • [5] Windows into non-Euclidean spaces
    Oxburgh, Stephen
    White, Chris D.
    Antoniou, Georgios
    Mertens, Lena
    Mullen, Christopher
    Ramsay, Jennifer
    McCall, Duncan
    Courtial, Johannes
    NOVEL OPTICAL SYSTEMS DESIGN AND OPTIMIZATION XVII, 2014, 9193
  • [6] On Distance Mapping from non-Euclidean Spaces to Euclidean Spaces
    Ren, Wei
    Miche, Yoan
    Oliver, Ian
    Holtmanns, Silke
    Bjork, Kaj-Mikael
    Lendasse, Amaury
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, CD-MAKE 2017, 2017, 10410 : 3 - 13
  • [7] Neural networks in non-Euclidean spaces
    Duch, W
    Adamczak, R
    Diercksen, GHF
    NEURAL PROCESSING LETTERS, 1999, 10 (03) : 201 - 210
  • [8] Scaling and testing for non-Euclidean spaces
    Spencer-Smith, J
    PROCEEDINGS OF THE TWENTY-SECOND ANNUAL CONFERENCE OF THE COGNITIVE SCIENCE SOCIETY, 2000, : 1057 - 1057
  • [9] Function approximation on non-Euclidean spaces
    Courrieu, P
    NEURAL NETWORKS, 2005, 18 (01) : 91 - 102
  • [10] POLYHEDRON ALGEBRA IN NON-EUCLIDEAN SPACES
    JESSEN, B
    COMMENTARII MATHEMATICI HELVETICI, 1978, 53 (04) : 525 - 528