Statistical modelling of Poisson/log-normal data

被引:16
|
作者
Miller, Guthrie [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
D O I
10.1093/rpd/ncl544
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In statistical data fitting, self consistency is checked by examining the closeness of the quantity chi(2)/NDF to 1, where chi(2) is the sum of squares of data minus fit divided by standard deviation, and NDF is the number of data minus the number of fit parameters. In order to calculate chi(2) one needs an expression for the standard deviation. In this note several alternative expressions for the standard deviation of data distributed according to a Poisson/log-normal distribution are proposed and evaluated by Monte Carlo simulation. Two preferred alternatives are identified. The use of replicate data to obtain uncertainty is problematic for a small number of replicates. A method to correct this problem is proposed. The log-normal approximation is good for sufficiently positive data. A modification of the log-normal approximation is proposed, which allows it to be used to test the hypothesis that the true value is zero.
引用
收藏
页码:155 / 163
页数:9
相关论文
共 50 条
  • [41] Normal log-normal mixture, leptokurtosis and skewness
    Yang, Minxian
    APPLIED ECONOMICS LETTERS, 2008, 15 (09) : 737 - 742
  • [42] STATISTICAL-ANALYSIS OF THE POWER SUM OF MULTIPLE CORRELATED LOG-NORMAL COMPONENTS
    SAFAK, A
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 1993, 42 (01) : 58 - 61
  • [43] Variational Bayesian Estimation of Statistical Properties of Composite Gamma Log-Normal Distribution
    Turlapaty, Anish C.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 6481 - 6492
  • [44] Innovative estimation of survival using log-normal survival modelling on ACCENT database
    Chapman, J. W.
    O'Callaghan, C. J.
    Hu, N.
    Ding, K.
    Yothers, G. A.
    Catalano, P. J.
    Shi, Q.
    Gray, R. G.
    O'Connell, M. J.
    Sargent, D. J.
    BRITISH JOURNAL OF CANCER, 2013, 108 (04) : 784 - 790
  • [45] Log-epsilon-skew normal: A generalization of the log-normal distribution
    Hutson, Alan D.
    Mashtare, Terry L., Jr.
    Mudholkar, Govind S.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (17) : 4197 - 4215
  • [46] Innovative estimation of survival using log-normal survival modelling on ACCENT database
    J W Chapman
    C J O'Callaghan
    N Hu
    K Ding
    G A Yothers
    P J Catalano
    Q Shi
    R G Gray
    M J O'Connell
    D J Sargent
    British Journal of Cancer, 2013, 108 : 784 - 790
  • [47] DETECTION IN WEIBULL AND LOG-NORMAL NOISES
    朱兆达
    JournalofElectronics(China), 1985, (02) : 103 - 118
  • [48] Fluctuations of entropy and log-normal superstatistics
    Abe, Sumiyoshi
    PHYSICAL REVIEW E, 2010, 82 (01):
  • [49] Radon: exploring the log-normal mystery
    Bossew, P.
    JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2010, 101 (10) : 826 - 834
  • [50] LOG-NORMAL PARADOX IN ATMOSPHERIC SCINTILLATIONS
    STROHBEH.JW
    WANG, TI
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1973, 63 (04) : 482 - 482