Optogenetic approaches for functional mouse brain mapping

被引:31
|
作者
Lim, Diana H. [1 ]
LeDue, Jeffrey [2 ]
Mohajerani, Majid H. [1 ]
Vanni, Matthieu P. [1 ]
Murphy, Timothy H. [1 ,2 ]
机构
[1] Univ British Columbia, Dept Psychiat, Vancouver, BC V5Z 1M9, Canada
[2] Univ British Columbia, Brain Res Ctr, Vancouver, BC V5Z 1M9, Canada
来源
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
optogenetic stimulation; Channelrhodopsin-2; in vivo imaging; functional mapping; connectivity; VOLTAGE-SENSITIVE DYES; LIGHT-INDUCED ACTIVATION; IMAGING NEURAL ACTIVITY; MOTOR CORTEX; IN-VIVO; BARREL CORTEX; TRANSGENIC MICE; NEURONAL CIRCUITS; PYRAMIDAL NEURONS; CEREBRAL-CORTEX;
D O I
10.3389/fnins.2013.00054
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
To better understand the connectivity of the brain, it is important to map both structural and functional connections between neurons and cortical regions. In recent years, a set of optogenetic tools have been developed that permit selective manipulation and investigation of neural systems. These tools have enabled the mapping of functional connections between stimulated cortical targets and other brain regions. Advantages of the approach include the ability to arbitrarily stimulate brain regions that express opsins, allowing for brain mapping independent of behavior or sensory processing. The ability of opsins to be rapidly and locally activated allows for investigation of connectivity with spatial resolution on the order of single neurons and temporal resolution on the order of milliseconds. Optogenetic methods for functional mapping have been applied in experiments ranging from in vitro investigation of microcircuits, to in vivo probing of inter regional cortical connections, to examination of global connections within the whole brain. We review recently developed functional mapping methods that use optogenetic single-point stimulation in the rodent brain and employ cellular electrophysiology, evoked motor movements, voltage sensitive dyes (VSDs), calcium indicators, or functional magnetic resonance imaging (fMRI) to assess activity. In particular we highlight results using red-shifted organic VSDs that permit high temporal resolution imaging in a manner spectrally separated from Channelrhodopsin-2 (ChR2) activation. VSD maps stimulated by ChR2 were dependent on intracortical synaptic activity and were able to reflect circuits used for sensory processing. Although the methods reviewed are powerful, challenges remain with respect to finding approaches that permit selective high temporal resolution assessment of stimulated activity in animals that can be followed longitudinally.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Neurovascular sequelae of repeated mild traumatic brain injury in an optogenetic mouse model
    Mester, J.
    Bazzigaluppi, P.
    Dorr, A.
    Beckett, T.
    Sled, J. G.
    Stefanovic, B.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2019, 39 : 248 - 249
  • [42] RECOMBINANT GENETIC APPROACHES TO FUNCTIONAL MAPPING OF THROMBIN
    MACGILLIVRAY, RTA
    IRWIN, DM
    GUINTO, ER
    STONE, JC
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1986, 485 : 73 - 79
  • [43] Optogenetic brain interfaces
    Pashaie, Ramin
    Anikeeva, Polina
    Lee, Jin Hyung
    Prakash, Rohit
    Yizhar, Ofer
    Prigge, Matthias
    Chander, Divya
    Richner, Thomas J.
    Williams, Justin
    IEEE Reviews in Biomedical Engineering, 2014, 7 : 3 - 30
  • [44] Integrated Approaches to Molecular Human Brain Mapping
    Hyde, Thomas
    Cookson, Mark
    Vawter, Marquis
    Jeromin, Andreas
    BIOLOGICAL PSYCHIATRY, 2009, 65 (08) : 84S - 84S
  • [45] Brain mapping across 16 autism mouse models reveals a spectrum of functional connectivity subtypes
    V. Zerbi
    M. Pagani
    M. Markicevic
    M. Matteoli
    D. Pozzi
    M. Fagiolini
    Y. Bozzi
    A. Galbusera
    M. L. Scattoni
    G. Provenzano
    A. Banerjee
    F. Helmchen
    M. A. Basson
    J. Ellegood
    J. P. Lerch
    M. Rudin
    A. Gozzi
    N. Wenderoth
    Molecular Psychiatry, 2021, 26 : 7610 - 7620
  • [46] Fine-grained mapping of mouse brain functional connectivity with resting-state fMRI
    Mechling, Anna E.
    Huebner, Neele S.
    Lee, Hsu-Lei
    Hennig, Juergen
    von Elverfeldt, Dominik
    Harsan, Laura-Adela
    NEUROIMAGE, 2014, 96 : 203 - 215
  • [47] Brain mapping across 16 autism mouse models reveals a spectrum of functional connectivity subtypes
    Zerbi, V
    Pagani, M.
    Markicevic, M.
    Matteoli, M.
    Pozzi, D.
    Fagiolini, M.
    Bozzi, Y.
    Galbusera, A.
    Scattoni, Ml
    Provenzano, G.
    Banerjee, A.
    Helmchen, F.
    Basson, M. A.
    Ellegood, J.
    Lerch, J. P.
    Rudin, M.
    Gozzi, A.
    Wenderoth, N.
    MOLECULAR PSYCHIATRY, 2021, 26 (12) : 7610 - 7620
  • [48] Advance of Noninvasive Brain Functional Mapping
    Denshi Joho Tsushin Gakkai Shi, 12 (1255):
  • [49] Mapping the structural and functional architecture of the brain
    Kousta, Stavroula
    TRENDS IN COGNITIVE SCIENCES, 2013, 17 (12) : 595 - 595
  • [50] Longitudinal Functional Brain Mapping in Supernormals
    Wang, Xixi
    Ren, Ping
    Baran, Timothy M.
    Raizada, Rajeev D. S.
    Mapstone, Mark
    Lin, Feng
    Weiner, Michael W.
    Aisen, Paul
    Weiner, Michael
    Aisen, Paul
    Petersen, Ronald
    Jack, Clifford R., Jr.
    Jagust, William
    Trojanowki, John Q.
    Toga, Arthur W.
    Beckett, Laurel
    Green, Robert C.
    Saykin, Andrew J.
    Morris, John
    Shaw, Leslie M.
    Khachaturian, Zaven
    Sorensen, Greg
    Carrillo, Maria
    Kuller, Lew
    Raichle, Marc
    Paul, Steven
    Davies, Peter
    Fillit, Howard
    Hefti, Franz
    Holtzman, David
    Mesulam, M. Marcel
    Potter, William
    Snyder, Peter
    Lilly, Eli
    Logovinsky, Veronika
    Green, Robert C.
    Montine, Tom
    Petersen, Ronald
    Aisen, Paul
    Jimenez, Gustavo
    Donohue, Michael
    Gessert, Devon
    Harless, Kelly
    Salazar, Jennifer
    Cabrera, Yuliana
    Walter, Sarah
    Hergesheimer, Lindsey
    Beckett, Laurel
    Harvey, Danielle
    Donohue, Michael
    CEREBRAL CORTEX, 2019, 29 (01) : 242 - 252