Detection of Epileptic Seizures From EEG Signals by Combining Dimensionality Reduction Algorithms With Machine Learning Models

被引:20
|
作者
Zubair, Muhammad [1 ]
Belykh, Maria Vladimirovna [2 ]
Naik, M. Umesh Kumar [1 ]
Gouher, Mohammad Fareeda Madeen [1 ]
Vishwakarma, Shani [3 ]
Ahamed, Shaik Rafi [3 ]
Kongara, Ramanjaneyulu [1 ]
机构
[1] Prasad Potluri Siddhartha Inst Technol, Dept Elect & Commun Engn, Vijayawada 520007, India
[2] Natl Res Univ Higher Sch Econ, Dept Appl Math, Moscow 101000, Russia
[3] IIT Guwahati, Dept Elect & Elect Engn, Gauhati 781039, India
关键词
Electroencephalography; Feature extraction; Discrete wavelet transforms; Epilepsy; Brain modeling; Dimensionality reduction; Time-frequency analysis; Epileptic seizures; discrete wavelet transform (DWT); sub-pattern PCA (SPPCA); cross sub-pattern correlation PCA (SUBXPCA); support vector machine (SVM); random forest; K-Nearest Neighbours (KNN); LightGBM; Catboost; Multilayer Perceptron (MLP); AUTOMATED DETECTION; WARNING SYSTEM; CLASSIFICATION; IDENTIFICATION; NETWORK; TRENDS; SVM;
D O I
10.1109/JSEN.2021.3077578
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Epilepsy is a neurological condition that affects the central nervous system. While its effects are different for each person, they mostly include abnormal behaviour, periods of loss of awareness and seizures. There are various traditional methods used to analyse EEG signals for epilepsy detection, which concludes to be time-consuming. Recently, several automated seizure detection frameworks using machine learning algorithms have been proposed to replace conventional methods. In this paper, more emphasis has been given to develop SPPCA and SUBXPCA dimensionality reduction algorithms to increase the classification accuracy of various machine learning models. Firstly, Discrete Wavelet Transform (DWT) is applied to EEG signals for extracting the time-frequency domain features of epileptic seizures such as the energy of each sub-pattern, spike rhythmicity, Relative Spike Amplitude (RSA), Dominant Frequency (DF) and Spectral Entropy (SE). The features obtained after performing DWT on an EEG signal are extensive in number, to select the prominent features and to retain their properties, correlation feature sub-pattern-based PCA (SPPCA), and cross sub-pattern correlation-based PCA (SUBXPCA) are used as a dimensionality reduction techniques. To validate the proposed work, performance evaluation parameter such as the accuracy of the time-frequency domain features from different combinations of the dataset has been compared with the latest state-of-the-art works. Simulation results show that the best accuracy of 97% is achieved for SPPCA algorithm by CatBoost classifier. And the best accuracy of 98% for SUBXPCA is achieved by random forest classifier, which clearly outperformed the other related works both in terms of accuracy and computational complexity.
引用
收藏
页码:16861 / 16869
页数:9
相关论文
共 50 条
  • [21] Detection Methods of Pseudo and Epileptic Seizures from EEG signals: A Short Review
    Yol, Seyma
    Tohumoglu, Gulay
    2020 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2020,
  • [22] Towards a better multivariate time-series detection of epileptic seizures in electroencephalogram (EEG) using Machine Learning algorithms
    Klibi, Salim
    Vernet, Marine
    Schwartz, Denis
    Farah, Imed Riadh
    2022 2ND INTERNATIONAL CONFERENCE OF SMART SYSTEMS AND EMERGING TECHNOLOGIES (SMARTTECH 2022), 2022, : 142 - 147
  • [23] On the Use of Wavelet Domain and Machine Learning for the Analysis of Epileptic Seizure Detection from EEG Signals
    Kavitha, K. V. N.
    Ashok, Sharmila
    Imoize, Agbotiname Lucky
    Ojo, Stephen
    Selvan, K. Senthamil
    Ahanger, Tariq Ahamed
    Alhassan, Musah
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [24] Combining machine learning models for the automatic detection of EEG arousals
    Fernandez-Varela, Isaac
    Hernandez-Pereira, Elena
    Alvarez-Estevez, Diego
    Moret-Bonillo, Vicente
    NEUROCOMPUTING, 2017, 268 : 100 - 108
  • [25] Emotion Detection from EEG Signals Using Machine Deep Learning Models
    Fernandes, Joao Vitor Marques Rabelo
    de Alexandria, Auzuir Ripardo
    Marques, Joao Alexandre Lobo
    de Assis, Debora Ferreira
    Motta, Pedro Crosara
    Silva, Bruno Riccelli dos Santos
    BIOENGINEERING-BASEL, 2024, 11 (08):
  • [26] Using Recurrent ANNs for the Detection of Epileptic Seizures in EEG Signals
    Rivero, Daniel
    Fernandez-Blanco, Enrique
    Dorado, Julian
    Pazos, Alejandro
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 587 - 592
  • [27] Graph Theory and Machine Learning Based Epileptic Seizures Analysis from EEG
    Shankar, Anand
    Dandapat, Samarendra
    Barma, Shovan
    2020 IEEE 63RD INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2020, : 982 - 985
  • [28] The Automatic Detection of Epileptic Seizures Based on EEG Signals Processing: Investigation of Different Features and Classification Algorithms
    Tautan, Alexandra-Maria
    Mandruta, Ioana
    Bajenaru, Ovidiu-Alexandru
    Strungaru, Rodica
    Taralunga, Dragos
    Hurezeanu, Bogdan
    Neagu , G. Mihaela
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2018, VOL 2, 2019, 68 (02): : 393 - 397
  • [29] Machine learning models and dimensionality reduction for improving the Android malware detection
    Moran, Pablo
    Robles-Gomez, Antonio
    Duque, Andres
    Tobarra, Llanos
    Pastor-Vargas, Rafael
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [30] Genetic algorithms tuned expert model for detection of epileptic seizures from EEG signatures
    Dhiman, Rohtash
    Saini, J. S.
    Priyanka
    APPLIED SOFT COMPUTING, 2014, 19 : 8 - 17