An iterative method for partial derivatives of eigenvectors of quadratic eigenvalue problems

被引:11
|
作者
Xie, Huiqing [1 ]
机构
[1] E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Partial derivatives of eigenvectors; Iterative method; Quadratic eigenvalue problems; CORRESPONDING EIGENVECTORS; COMPUTATION; SYSTEMS;
D O I
10.1007/s10543-011-0366-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
An iterative method is proposed to compute partial derivatives of eigenvectors of quadratic eigenvalue problems with respect to system parameters. Convergence theory of the proposed method is established. Numerical experiments demonstrate that the proposed method can be used efficiently for partial derivatives of eigenvectors corresponding to dominant eigenvalues.
引用
收藏
页码:525 / 536
页数:12
相关论文
共 50 条
  • [31] ON GENERALIZED AND QUADRATIC EIGENVALUE PROBLEMS
    BINDING, P
    APPLICABLE ANALYSIS, 1981, 12 (01) : 27 - 45
  • [32] Free Vibrations of Multi-Degree Structures: Solving Quadratic Eigenvalue Problems with an Excitation and Fast Iterative Detection Method
    Liu, Chein-Shan
    Kuo, Chung-Lun
    Chang, Chih-Wen
    VIBRATION, 2022, 5 (04): : 914 - 935
  • [33] SOLUTION OF THERMOACOUSTIC EIGENVALUE PROBLEMS WITH A NON-ITERATIVE METHOD
    Buschmann, Philip E.
    Mensah, Georg A.
    Nicoud, Franck
    Moeck, Jonas R.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2019, VOL 4A, 2019,
  • [34] AN ITERATIVE METHOD FOR SOLVING NONLINEAR EIGENVALUE PROBLEMS IN MATRIX FORM
    YANG, IM
    COMPUTERS & STRUCTURES, 1988, 29 (02) : 353 - 354
  • [35] iVI: An Iterative Vector Interaction Method for Large Eigenvalue Problems
    Huang, Chao
    Liu, Wenjian
    Xiao, Yunlong
    Hoffmann, Mark R.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2017, 38 (29) : 2481 - 2499
  • [36] An iterative adaptive finite element method for elliptic eigenvalue problems
    Solin, Pavel
    Giani, Stefano
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (18) : 4582 - 4599
  • [37] Iterative approach for the eigenvalue problems
    J DATTA
    P K BERA
    Pramana, 2011, 76 : 47 - 66
  • [38] Iterative approach for the eigenvalue problems
    Datta, J.
    Bera, P. K.
    PRAMANA-JOURNAL OF PHYSICS, 2011, 76 (01): : 47 - 66
  • [39] Partial derivatives of repeated eigenvalues and their eigenvectors
    Prells, U
    Friswell, MI
    AIAA JOURNAL, 1997, 35 (08) : 1363 - 1368
  • [40] A receptance method for robust and minimum norm partial quadratic eigenvalue assignment
    Xie, Huiqing
    1600, Academic Press (160):