Evapotranspiration Partitioning Based on Leaf and Ecosystem Water Use Efficiency

被引:14
|
作者
Yu, Liuyang [1 ,2 ,3 ]
Zhou, Sha [4 ]
Zhao, Xining [1 ,2 ,3 ]
Gao, Xiaodong [1 ,2 ,3 ]
Jiang, Kongtao [2 ,3 ]
Zhang, Baoqing [5 ]
Cheng, Lei [6 ]
Song, Xiaolin [7 ]
Siddique, Kadambot H. M. [8 ]
机构
[1] Northwest A&F Univ, Inst Soil & Water Conservat, Yangling, Shaanxi, Peoples R China
[2] Northwest A&F Univ, Minist Educ, Key Lab Agr Soil & Water Engn Arid & Semiarid Are, Yangling, Shaanxi, Peoples R China
[3] Northwest A&F Univ, Inst Water Saving Agr Arid Areas China, Yangling, Shaanxi, Peoples R China
[4] Beijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resources Ecol, Beijing, Peoples R China
[5] Lanzhou Univ, Coll Earth & Environm Scien, Key Lab Western Chinas Environm Syst, Minist Educ, Lanzhou, Peoples R China
[6] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn, Wuhan, Peoples R China
[7] Northwest A&F Univ, Coll Hort, State Key Lab Crop Stress Biol Arid Areas, Xianyang, Peoples R China
[8] Univ Western Australia, UWA Inst Agr, Perth, WA, Australia
基金
中国国家自然科学基金;
关键词
ET partitioning; leaf water use efficiency; ecosystem water use efficiency; eddy covariance; gross primarily productivity (GPP); stomatal conductance model; SAP FLOW MEASUREMENTS; EDDY-COVARIANCE; CARBON-DIOXIDE; GAS-EXCHANGE; LONG-TERM; ATMOSPHERIC CO2; ISOTOPE METHOD; FOREST; TRANSPIRATION; FLUXES;
D O I
10.1029/2021WR030629
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Partitioning evapotranspiration (ET) into evaporation (E) and transpiration (T) is essential for understanding the global hydrological cycle and improving water resource management. However, ecosystem-level ET partitioning remains challenging. Here we proposed a novel ET partitioning method that uses the unified stomatal conductance model to estimate T:ET by calculating the ratio of the ecosystem water use efficiency (WUEeco) to leaf WUE (WUEleaf) using half-hourly flux data. The WUEleaf values estimated by the unified stomatal conductance model agree with an independently measured ratio of hourly photosynthetic rate to T rate (R-2 = 0.69). The sensitivity of T:ET to the key parameter g(1) varied among different plant functional types (PFTs), but the T:ET variations for each PFT were all controlled within 20% when g(1) altered within its 95% confidence interval. The mean annual T:ET was highest for evergreen broadleaf forests (0.63), followed by deciduous broad forests (0.62), grasslands (0.52), evergreen needleleaf forests (0.43) and woody savannas (0.40). C-3 croplands had higher T:ET (0.65) than C-4 croplands (0.48). Seasonal variations in T:ET varied across PFTs and the leaf area index explained about 50% of the variation in seasonal T:ET. Our method is not only consistent with other three EC-based methods: Z16, N18, and L19 (R = 0.92, 0.94, and 0.68), but also shows high correlations to sap flow-based T (R = 0.70) at three different forest sites. The method developed in this study provides a feasible and universal approach for ET partitioning of global EC sites, improving the understanding of ecosystem T characteristics across climates and PFTs.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Parameterizing ecosystem light use efficiency and water use efficiency to estimate maize gross primary production and evapotranspiration using MODIS EVI
    Wagle, Pradeep
    Gowda, Prasanna H.
    Xiao, Xiangming
    Anup, K. C.
    AGRICULTURAL AND FOREST METEOROLOGY, 2016, 222 : 87 - 97
  • [22] Partitioning evapotranspiration in a tallgrass prairie using micrometeorological and water use efficiency approaches under contrasting rainfall regimes
    da Rocha, Adolpho Emanuel Quintela
    Santos, Eduardo Alvarez
    Patrignani, Andres
    JOURNAL OF HYDROLOGY, 2022, 608
  • [23] Impacts of environmental factors on ecosystem water use efficiency: An insight from gross primary production and evapotranspiration dynamics
    Kong, Zhe
    Wang, Tiejun
    Han, Qiong
    Dai, Yibin
    Zuo, Yutao
    Wang, Lichun
    Lang, Yunchao
    AGRICULTURAL AND FOREST METEOROLOGY, 2025, 362
  • [24] Water-use efficiency in response to climate change: from leaf to ecosystem in a temperate steppe
    Niu, Shuli
    Xing, Xuerong
    Zhang, Zhe
    Xia, Jianyang
    Zhou, Xuhui
    Song, Bing
    Li, Linghao
    Wan, Shiqiang
    GLOBAL CHANGE BIOLOGY, 2011, 17 (02) : 1073 - 1082
  • [25] Leaf temperature impacts canopy water use efficiency independent of changes in leaf level water use efficiency
    Sexton, Thomas M.
    Steber, Camille M.
    Cousins, Asaph B.
    JOURNAL OF PLANT PHYSIOLOGY, 2021, 258
  • [26] Leaf temperature impacts canopy water use efficiency independent of changes in leaf level water use efficiency
    Sexton, Thomas M.
    Steber, Camille M.
    Cousins, Asaph B.
    JOURNAL OF PLANT PHYSIOLOGY, 2021, 258
  • [27] Spatiotemporal Analysis of Evapotranspiration and Effects of Water and Heat on Water Use Efficiency
    Tang, Yuan-Yuan
    Chen, Jian-Ping
    Zhang, Feng
    Yuan, Shi-Song
    WATER, 2021, 13 (21)
  • [28] Evapotranspiration partitioning, water use efficiency, and maize yield under different film mulching and nitrogen application in northwest China
    Fang, Heng
    Li, Yuannong
    Gu, Xiaobo
    Yu, Meng
    Du, Yadan
    Chen, Pengpeng
    Li, Yupeng
    FIELD CROPS RESEARCH, 2021, 264
  • [29] CANOPY EVAPOTRANSPIRATION, LEAF TRANSPIRATION AND WATER USE EFFICIENCY OF AN ANDEAN PASTURE IN SE-ECUADOR - A CASE STUDY
    Silva, Brenner
    Strobl, Simone
    Beck, Erwin
    Bendix, Joerg
    ERDKUNDE, 2016, 70 (01) : 5 - 18
  • [30] Evapotranspiration partitioning, stomatal conductance, and components of the water balance: A special case of a desert ecosystem in China
    Zhao, Wenzhi
    Liu, Bing
    Chang, Xuexiang
    Yang, Qiyue
    Yang, Yuting
    Liu, Zhiling
    Cleverly, James
    Eamus, Derek
    JOURNAL OF HYDROLOGY, 2016, 538 : 374 - 386