Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description

被引:85
|
作者
Bruneau, D [1 ]
Quaglia, P [1 ]
Flamant, C [1 ]
Meissonnier, M [1 ]
Pelon, J [1 ]
机构
[1] Univ Paris 06, CNRS, Serv Aeron, F-75252 Paris 05, France
关键词
D O I
10.1364/AO.40.003450
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The airborne differential absorption lidar LEANDRE II, developed for profiling tropospheric water-vapor mixing ratios, is described. The emitter is a flash-lamp-pumped alexandrite laser, which operates in a double-pulse, dual-wavelength mode in the 727-736 nm spectral domain. Two 50-mJ successive on-line and off-line pulses with an output linewidth of 2.4 X 10(-2) cm(-1) and a spectral purity larger than 99.99% are emitted at a 50-mus time interval. The spectral positioning is controlled in real time by a wavemeter with an absolute accuracy of 5 X 10(-3) cm(-1). The receiver is a 30-cm aperture telescope with a 3.5-mrad field of view and a l-nm filter bandwidth. These instrument characteristics are defined for measuring the water-vapor mixing ratio with an accuracy better than 0.5 g kg(-1) in the first 5 km of the atmosphere with a range resolution of 300 m, integration on 100 shots, and an instrumental systematic error of less than 2%. The sensitivity study and first results are presented in part II [Appl. Opt. 40, 3462-3475 (2001)].. (C) 2001 Optical Society of America.
引用
收藏
页码:3450 / 3461
页数:12
相关论文
共 50 条
  • [31] System design and performance simulation of ground-based differential absorption lidar for water-vapor measurements
    Ge Ye
    Shu Rong
    Hu Yi-Hua
    Liu Hao
    ACTA PHYSICA SINICA, 2014, 63 (20)
  • [32] Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere
    Nehrir, Amin R.
    Repasky, Kevin S.
    Carlsten, John L.
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2011, 28 (02) : 131 - 147
  • [33] The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance
    Wirth, M.
    Fix, A.
    Mahnke, P.
    Schwarzer, H.
    Schrandt, F.
    Ehret, G.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2009, 96 (01): : 201 - 213
  • [34] The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance
    M. Wirth
    A. Fix
    P. Mahnke
    H. Schwarzer
    F. Schrandt
    G. Ehret
    Applied Physics B, 2009, 96
  • [35] An Attempt to Retrieve Continuous Water Vapor Profiles in Marine Lower Troposphere Using Shipboard Raman/Mie Lidar System
    Katsumata, Masaki
    Taniguchi, Kyoko
    Nishizawa, Tomoaki
    SOLA, 2020, 16A : 6 - 11
  • [36] Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter
    Wulfmeyer, V
    APPLIED OPTICS, 1998, 37 (18): : 3804 - 3824
  • [37] WATER-VAPOR PROFILING OVER OCEAN SURFACE FROM AIRBORNE 90 AND 183 GHZ RADIOMETRIC MEASUREMENTS UNDER CLEAR AND CLOUDY CONDITIONS
    WANG, JR
    BONCYK, WC
    SHARMA, AK
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1993, 31 (04): : 853 - 859
  • [38] Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere
    Repasky, Kevin S.
    Moen, Drew
    Spuler, Scott
    Nehrir, Amin R.
    Carlsten, John L.
    REMOTE SENSING, 2013, 5 (12) : 6241 - 6259
  • [39] REMOTE LIDAR SENSING OF WATER-VAPOR IN THE STRATOSPHERE AND TROPOSPHERE USING H2O ABSORPTION-LINES IN THE 3 MU-M REGION
    ZUEV, VV
    ROMANOVSKII, OA
    SOVIET JOURNAL OF REMOTE SENSING, 1990, 6 (05): : 697 - 711
  • [40] Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. I. Far wings of allowed lines
    Ma, Q.
    Tipping, R. H.
    Leforestier, C.
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (12):