Mixed INAR(1) Poisson regression models:: Analyzing heterogeneity and serial dependencies in longitudinal count data

被引:0
|
作者
Böckenholt, U [1 ]
机构
[1] Univ Illinois, Dept Psychol, Champaign, IL 61820 USA
关键词
autoregression; binomial thinning; count data; finite mixture;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper presents finite mixture versions of integer-valued autoregressive (INAR) Poisson regression models for investigating regularity and predictability of purchase behavior over time. The approach facilitates the analysis of heterogeneity and serial correlation effects as well as conditional and marginal analyses of the effects of covariates. An application to scanner panel data of detergents yields substantive insights into sources of autodependencies in individual category purchases. (C) 1999 Elsevier Science S.A. All rights reserved. JEL classification. C14; C22; C23; C25; M31.
引用
收藏
页码:317 / 338
页数:22
相关论文
共 50 条
  • [21] Zero-Inflated Poisson Regression Models with Right Censored Count Data
    Saffari, Seyed Ehsan
    Adnan, Robiah
    MATEMATIKA, 2011, 27 (01) : 21 - 29
  • [22] Analyzing Discontinuities in Longitudinal Count Data: A Multilevel Generalized Linear Mixed Model
    Peugh, James L.
    Beal, Sarah J.
    McGrady, Meghan E.
    Toland, Michael D.
    Mara, Constance
    PSYCHOLOGICAL METHODS, 2021, 26 (04) : 375 - 397
  • [23] Analyzing Longitudinal Data With the Linear Mixed Models Procedure in SPSS
    West, Brady T.
    EVALUATION & THE HEALTH PROFESSIONS, 2009, 32 (03) : 207 - 228
  • [24] Discrete-time hazard regression models with hidden heterogeneity - The semiparametric mixed Poisson regression approach
    Land, KC
    Nagin, DS
    McCall, PL
    SOCIOLOGICAL METHODS & RESEARCH, 2001, 29 (03) : 342 - 373
  • [25] Negative Binomial Mixed Models for Analyzing Longitudinal Microbiome Data
    Zhang, Xinyan
    Pei, Yu-Fang
    Zhang, Lei
    Guo, Boyi
    Pendegraft, Amanda H.
    Zhuang, Wenzhuo
    Yi, Nengjun
    FRONTIERS IN MICROBIOLOGY, 2018, 9
  • [26] A Tutorial on Count Regression and Zero-Altered Count Models for Longitudinal Substance Use Data
    Atkins, David C.
    Baldwin, Scott A.
    Zheng, Cheng
    Gallop, Robert J.
    Neighbors, Clayton
    PSYCHOLOGY OF ADDICTIVE BEHAVIORS, 2013, 27 (01) : 166 - 177
  • [27] Use of Poisson spatiotemporal regression models for the Brazilian Amazon forest: malaria count data
    Achcar, Jorge Alberto
    Martinez, Edson Zangiacomi
    Pires de Souza, Aparecida Doniseti
    Tachibana, Vilma Mayumi
    Flores, Edilson Ferreira
    REVISTA DA SOCIEDADE BRASILEIRA DE MEDICINA TROPICAL, 2011, 44 (06) : 749 - 754
  • [28] Regression Models for Count Data: Illustrations using Longitudinal Predictors of Childhood Injury
    Karazsia, Bryan T.
    van Dulmen, Manfred H. M.
    JOURNAL OF PEDIATRIC PSYCHOLOGY, 2008, 33 (10) : 1076 - 1084
  • [29] Analyzing Longitudinal Zero-inflated Oral Microbiome Count Data using Two-stage Mixed Effects Models
    Wang, Jian
    Reyes-Gibby, Cielito C.
    Shete, Sanjay
    GENETIC EPIDEMIOLOGY, 2021, 45 (07) : 797 - 797
  • [30] Mixture Poisson regression models for heterogeneous count data based on latent and fuzzy class analysis
    Yang, MS
    Lai, CY
    SOFT COMPUTING, 2005, 9 (07) : 519 - 524