Including Delbruck scattering in GEANT4

被引:9
|
作者
Omer, Mohamed [1 ,3 ]
Hajima, Ryoichi [1 ,2 ]
机构
[1] Japan Atom Energy Agcy, Integrated Support Ctr Nucl Nonproliferat & Nucl, Tokai, Ibaraki 3191195, Japan
[2] Natl Inst Quantum & Radiol Sci & Technol, Tokai, Ibaraki 3191106, Japan
[3] Assiut Univ, Fac Sci, Phys Dept, Assiut 71516, Egypt
关键词
gamma-Ray elastic scattering; Delbruck scattering; GEANT4; Coherent scattering; Rayleigh scattering; Nuclear Thomson scattering; RAYLEIGH-SCATTERING; ELASTIC-SCATTERING; PHOTONS; ATOMS; ASSAY;
D O I
10.1016/j.nimb.2017.05.028
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Elastic scattering of gamma-rays is a significant interaction among gamma-ray interactions with matter. Therefore, the planning of experiments involving measurements of gamma-rays using Monte Carlo simulations usually includes elastic scattering. However, current simulation tools do not provide a complete picture of elastic scattering. The majority of these tools assume Rayleigh scattering is the primary contributor to elastic scattering and neglect other elastic scattering processes, such as nuclear Thomson and Delbruck scattering. Here, we develop a tabulation-based method to simulate elastic scattering in one of the most common open-source Monte Carlo simulation toolkits, GEANT4. We collectively include three processes, Rayleigh scattering, nuclear Thomson scattering, and Delbruck scattering. Our simulation more appropriately uses differential cross sections based on the second-order scattering matrix instead of current data, which are based on the form factor approximation. Moreover, the superposition of these processes is carefully taken into account emphasizing the complex nature of the scattering amplitudes. The simulation covers an energy range of 0.01 MeV <= E <= 3 MeV and all elements with atomic numbers of 1 <= Z <= 99. In addition, we validated our simulation by comparing the differential cross sections measured in earlier experiments with those extracted from the simulations. We find that the simulations are in good agreement with the experimental measurements. Differences between the experiments and the simulations are 21% for uranium, 24% for lead, 3% for tantalum, and 8% for cerium at 2.754 MeV. Coulomb corrections to the Delbruck amplitudes may account for the relatively large differences that appear at higher Z values. (C)2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:43 / 49
页数:7
相关论文
共 50 条
  • [21] Recent developments in GEANT4
    Allison, J.
    Amako, K.
    Apostolakis, J.
    Arce, P.
    Asai, M.
    Aso, T.
    Bagli, E.
    Bagulya, A.
    Banerjee, S.
    Barrand, G.
    Beck, B. R.
    Bogdanov, A. G.
    Brandt, D.
    Brown, J. M. C.
    Burkhardt, H.
    Canal, Ph.
    Cano-Ott, D.
    Chauvie, S.
    Cho, K.
    Cirrone, G. A. P.
    Cooperman, G.
    Cortes-Giraldo, M. A.
    Cosmo, G.
    Cuttone, G.
    Depaola, G.
    Desorgher, L.
    Dong, X.
    Dotti, A.
    Elvira, V. D.
    Folger, G.
    Francis, Z.
    Galoyan, A.
    Garnier, L.
    Gayer, M.
    Genser, K. L.
    Grichine, V. M.
    Guatelli, S.
    Gueye, P.
    Gumplinger, P.
    Howard, A. S.
    Hrivnacova, I.
    Hwang, S.
    Incerti, S.
    Ivanchenko, A.
    Ivanchenko, V. N.
    Jones, F. W.
    Jun, S. Y.
    Kaitaniemi, P.
    Karakatsanis, N.
    Karamitrosi, M.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 835 : 186 - 225
  • [22] Geant4 atomic relaxation
    Guatelli, S
    Mantero, A
    Mascialino, B
    Nieminen, P
    Pia, MG
    Saliceti, S
    2004 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-7, 2004, : 2178 - 2181
  • [23] Geant4 simulation of continuum
    Silva, Z.
    Ferrer, A.
    Cristancho, F.
    VII LATIN AMERICAN SYMPOSIUM ON NUCLEAR PHYSICS AND APPLICATIONS, 2007, 947 : 489 - +
  • [24] An implementation of spin-dependent hadron elastic scattering in GEANT4
    Jeong, Hoyong
    Won, Eunil
    Semertzidis, Yannis K.
    Stephenson, Edward J.
    Park, Seongtae
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2022, 80 (06) : 437 - 446
  • [25] APPLICATION OF GEANT4 TO THE DATA ANALYSIS OF THERMAL NEUTRON SCATTERING EXPERIMENTS
    Li, Gang
    Bentoumi, Ghaouti
    Tun, Zin
    Li, Liqian
    Sur, Bhaskar
    CNL NUCLEAR REVIEW, 2018, 7 (01) : 10 - 16
  • [26] An implementation of spin-dependent hadron elastic scattering in GEANT4
    Hoyong Jeong
    Eunil Won
    Yannis K. Semertzidis
    Edward J. Stephenson
    Seongtae Park
    Journal of the Korean Physical Society, 2022, 80 : 437 - 446
  • [27] Geant4 electromagnetic physics
    Chauvie, S
    Grichine, V
    Gumplinger, P
    Ivanchenko, V
    Kokoulin, R
    Magni, S
    Maire, M
    Nieminen, P
    Pia, MG
    Rybin, A
    Urban, L
    ADVANCED MONTE CARLO FOR RADIATION PHYSICS, PARTICLE TRANSPORT SIMULATION AND APPLICATIONS, 2001, : 153 - 158
  • [28] The GEANT4 Visualisation System
    Allison, J.
    Asai, M.
    Barrand, G.
    Donszelmann, M.
    Minamimoto, K.
    Perl, J.
    Tanaka, S.
    Tcherniaev, E.
    Tinslay, J.
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 178 (05) : 331 - 365
  • [29] GEANT4 and its validation
    Amako, K
    Guatelli, S
    Ivanchencko, V
    Maire, M
    Mascialino, B
    Murakami, K
    Pandola, L
    Parlati, S
    Pia, MG
    Piergentili, M
    Sasaki, T
    Urban, L
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2006, 150 : 44 - 49
  • [30] The Geant4 geometry modeler
    Cosmo, G
    2004 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-7, 2004, : 2196 - 2198