Analysis of asynchronous longitudinal data with partially linear models

被引:10
|
作者
Chen, Li [1 ]
Cao, Hongyuan [1 ]
机构
[1] Univ Missouri, Dept Stat, Columbia, MO 65211 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2017年 / 11卷 / 01期
关键词
Asynchronous longitudinal data; estimating estimations; local polynomials; partially linear models; MULTIVARIATE SURVIVAL-DATA; REGRESSION-ANALYSIS; HAZARD REGRESSION;
D O I
10.1214/17-EJS1266
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study partially linear models for asynchronous longitudinal data to incorporate nonlinear time trend effects. Local and global estimating equations are developed for estimating the parametric and nonparametric effects. We show that with a proper choice of the kernel bandwidth parameter, one can obtain consistent and asymptotically normal parameter estimates for the linear effects. Asymptotic properties of the estimated nonlinear effects are established. Extensive simulation studies provide numerical support for the theoretical findings. Data from an HIV study are used to illustrate our methodology.
引用
收藏
页码:1549 / 1569
页数:21
相关论文
共 50 条