Analysis of asynchronous longitudinal data with partially linear models

被引:10
|
作者
Chen, Li [1 ]
Cao, Hongyuan [1 ]
机构
[1] Univ Missouri, Dept Stat, Columbia, MO 65211 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2017年 / 11卷 / 01期
关键词
Asynchronous longitudinal data; estimating estimations; local polynomials; partially linear models; MULTIVARIATE SURVIVAL-DATA; REGRESSION-ANALYSIS; HAZARD REGRESSION;
D O I
10.1214/17-EJS1266
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study partially linear models for asynchronous longitudinal data to incorporate nonlinear time trend effects. Local and global estimating equations are developed for estimating the parametric and nonparametric effects. We show that with a proper choice of the kernel bandwidth parameter, one can obtain consistent and asymptotically normal parameter estimates for the linear effects. Asymptotic properties of the estimated nonlinear effects are established. Extensive simulation studies provide numerical support for the theoretical findings. Data from an HIV study are used to illustrate our methodology.
引用
收藏
页码:1549 / 1569
页数:21
相关论文
共 50 条
  • [1] Shrinkage and pretest estimators for longitudinal data analysis under partially linear models
    Hossain, S.
    Ahmed, S. Ejaz
    Yi, Grace Y.
    Chen, B.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2016, 28 (03) : 531 - 549
  • [2] Variable selection for generalized partially linear models with longitudinal data
    Zhang, Jinghua
    Xue, Liugen
    EVOLUTIONARY INTELLIGENCE, 2022, 15 (04) : 2473 - 2483
  • [3] Nonconcave penalized estimation for partially linear models with longitudinal data
    Yang, Yiping
    Li, Gaorong
    Lian, Heng
    STATISTICS, 2016, 50 (01) : 43 - 59
  • [4] Asymptotic Normality for the Partially Linear EV Models with Longitudinal Data
    Liu, Qiang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (07) : 1149 - 1158
  • [5] Variable selection for generalized partially linear models with longitudinal data
    Jinghua Zhang
    Liugen Xue
    Evolutionary Intelligence, 2022, 15 : 2473 - 2483
  • [6] Longitudinal data analysis based on generalized linear partially varying-coefficient models
    Rong, Yaohua
    Tang, Manlai
    Tian, Maozai
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (04) : 1983 - 2001
  • [7] SEMIPARAMETRIC GEE ANALYSIS IN PARTIALLY LINEAR SINGLE-INDEX MODELS FOR LONGITUDINAL DATA
    Chen, Jia
    Li, Degui
    Liang, Hua
    Wang, Suojin
    ANNALS OF STATISTICS, 2015, 43 (04): : 1682 - 1715
  • [8] Analysis of longitudinal data with hierarchical linear models
    Goellner, Richard
    Gollwitzer, Mario
    Heider, Jens
    Zaby, Alexandra
    Schroeder, Annette
    ZEITSCHRIFT FUR KLINISCHE PSYCHOLOGIE UND PSYCHOTHERAPIE, 2010, 39 (03): : 179 - 188
  • [9] Variable Selection in the Partially Linear Errors-in-Variables Models for Longitudinal Data
    Yiping YANG
    Liugen XUE
    Weihu CHENG
    Acta Mathematicae Applicatae Sinica(English Series), 2012, 28 (04) : 769 - 780
  • [10] Empirical Likelihood for Partially Linear Errors-in-variables Models with Longitudinal Data
    Li YAN
    Xiao-yan TAN
    Xia CHEN
    Acta Mathematicae Applicatae Sinica, 2022, 38 (03) : 664 - 683