Stability window of trapless polariton Bose-Einstein condensates

被引:2
|
作者
Sabari, S. [1 ,2 ]
Kumar, R. Kishor [3 ,4 ]
Radha, R. [2 ]
Muruganandam, P. [5 ]
机构
[1] UNESP Univ Estadual Paulista, Inst Theoret Phys, BR-01156970 Sao Paulo, SP, Brazil
[2] Govt Coll Women, Dept Phys, Ctr Nonlinear Sci CeNSc, Kumbakonam 612001, India
[3] Univ Otago, Dept Phys, Ctr Quantum Sci, Dunedin 9054, New Zealand
[4] Univ Otago, Dodd Walls Ctr Photon & Quantum Technol, Dunedin 9054, New Zealand
[5] Bharathidasan Univ, Dept Phys, Tiruchirappalli 620024, India
基金
巴西圣保罗研究基金会;
关键词
SOLITONS;
D O I
10.1103/PhysRevB.105.224315
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We theoretically explore the possibility of stabilizing the trapless polariton Bose-Einstein condensates (pBECs). Exploiting the variational method, we solve the associated nonlinear, complex Gross-Pitaevskii equation and derive the equation of motion for the amplitude and width of the condensate. These variational results described by ordinary differential equations are rewritten to perform a linear stability analysis to generate a stability window in the repulsive domain. A set of coupled nonlinear ordinary differential equations obtained through the variational approach are then solved by numerical simulations through the fourth-order Runge-Kutta method, which are further supported by the split-step Crank-Nicholson method, thereby setting the platform for stable pBECs. In particular, we generate a window containing system parameters in the g(1) - gamma(eff) space within which the system can admit stable condensates. The highlight of the results is that one observes beating effects in the real time evolution of the condensates with attractive interactions much similar to multicomponent BECs, and their periodicity can be varied by manipulating linear and nonlinear loss/gain terms. For repulsive condensates, one notices the stretching of the density.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Interference of Bose-Einstein Condensates
    Band, Y. B.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (50): : 16097 - 16103
  • [32] Studies of Bose-Einstein condensates
    Andrews, MR
    Durfee, DS
    Inouye, S
    Stamper-Kurn, DM
    Miesner, HJ
    Ketterle, W
    JOURNAL OF LOW TEMPERATURE PHYSICS, 1998, 110 (1-2) : 153 - 166
  • [33] Spinor Bose-Einstein condensates
    Ueda, Masahito
    CONTEMPORARY PHYSICS, 2022, 63 (02) : 106 - 115
  • [34] Fragmentation of Bose-Einstein condensates
    Mueller, Erich J.
    Ho, Tin-Lun
    Ueda, Masahito
    Baym, Gordon
    PHYSICAL REVIEW A, 2006, 74 (03):
  • [35] Dynamics of Bose-Einstein Condensates
    Schlein, Benjamin
    NEW TRENDS IN MATHEMATICAL PHYSICS, 2009, : 565 - 589
  • [36] Solitons in Bose-Einstein condensates
    Balakrishnan, Radha
    Satija, Indubala I.
    PRAMANA-JOURNAL OF PHYSICS, 2011, 77 (05): : 929 - 947
  • [37] Dephasing of Bose-Einstein condensates
    Graham, R
    JOURNAL OF MODERN OPTICS, 2000, 47 (14-15) : 2615 - 2627
  • [38] Visualizing Bose-Einstein condensates
    Ketcham, PM
    Feder, DL
    COMPUTING IN SCIENCE & ENGINEERING, 2003, 5 (01) : 86 - 89
  • [39] Spinor Bose-Einstein condensates
    Kawaguchi, Yuki
    Ueda, Masahito
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2012, 520 (05): : 253 - 381
  • [40] Fidelity of a Bose-Einstein condensates
    Liu, J
    Wang, WG
    Zhang, CW
    Niu, Q
    Li, BW
    PHYSICS LETTERS A, 2006, 353 (2-3) : 216 - 220