Mixed-mode oscillations and chaos from a simple second-order oscillator under weak periodic perturbation

被引:52
|
作者
Shimizu, Kuniyasu [1 ]
Sekikawa, Munehisa [2 ,3 ]
Inaba, Naohiko [4 ]
机构
[1] Chiba Inst Technol, Dept Elect Elect & Comp Engn, Chiba 2750016, Japan
[2] JST, FIRST, Aihara Innovat Math Modelling Project, Tokyo 1538505, Japan
[3] Univ Tokyo, Inst Ind Sci, Tokyo 1538505, Japan
[4] Meiji Univ, Dept Elect & Bioinformat, Kawasaki, Kanagawa 2148571, Japan
关键词
The driven Bonhoeffer-van der Pol oscillator; Subcritical Andronov-Hopf bifurcation; Mixed-mode oscillations; Chaos; BONHOEFFER-VAN; SYSTEMS;
D O I
10.1016/j.physleta.2011.02.053
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, we propose a remarkably simple oscillator that exhibits extremely complicated behaviors. The second-order nonautonomous differential equation discussed in this Letter is considered to be one of the simplest dynamics that can produce mixed-mode oscillations (MMOs) and chaos. Our model uses a Bonhoeffer-van der Pol (BVP) oscillator under weak periodic perturbation. The parameter set of the BVP equation is chosen such that a focus and a relaxation oscillation coexist when no perturbation is applied. Under weak periodic perturbation, various types of MMOs and chaos with remarkably complicated waveforms are observed. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1566 / 1569
页数:4
相关论文
共 21 条