Scaling behavior of explosive percolation on the square lattice

被引:85
|
作者
Ziff, Robert M. [1 ,2 ]
机构
[1] Univ Michigan, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
ALGORITHM; HOMOLOGY;
D O I
10.1103/PhysRevE.82.051105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Clusters generated by the product-rule growth model of Achlioptas, D'Souza, and Spencer on a two-dimensional square lattice are shown to obey qualitatively different scaling behavior than standard (random growth) percolation. The threshold with unrestricted bond placement (allowing loops) is found precisely using several different criteria based on both moments and wrapping probabilities, yielding p(c) = 0.526 565 +/- 0.000 005, consistent with the recent result of Radicchi and Fortunato. The correlation-length exponent nu is found to be close to 1. The qualitative difference from regular percolation is shown dramatically in the behavior of the percolation probability P-infinity(size of largest cluster), of the susceptibility, and of the second moment of finite clusters, where discontinuities appear at the threshold. The critical cluster-size distribution does not follow a consistent power law for the range of system sizes we study (L <= 8192) but may approach a power law with tau > 2 for larger L.
引用
收藏
页数:8
相关论文
共 50 条
  • [32] BOND PERCOLATION ON THE SQUARE LATTICE - ANISOTROPIC SYSTEMS
    MCGURN, AR
    PHYSICA A, 1983, 119 (1-2): : 295 - 306
  • [33] ON SQUARE LATTICE DIRECTED PERCOLATION AND RESISTANCE MODELS
    WIERMAN, JC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (15): : 3545 - 3551
  • [34] Percolation of randomly distributed growing clusters: Finite-size scaling and critical exponents for the square lattice
    Tsakiris, N.
    Maragakis, M.
    Kosmidis, K.
    Argyrakis, P.
    PHYSICAL REVIEW E, 2010, 82 (04)
  • [35] Exact finite-size scaling for the random-matrix representation of bond percolation on square lattice
    Malekan, Azadeh
    Saber, Sina
    Saberi, Abbas Ali
    CHAOS, 2022, 32 (02)
  • [36] PERCOLATION ON THE SQUARE LATTICE IN A LXM GEOMETRY - ANALYSIS OF PERCOLATION CLUSTERS PROPERTIES
    MONETTI, RA
    ALBANO, EV
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1993, 90 (03): : 351 - 355
  • [37] SCALING ASSUMPTION FOR LATTICE ANIMALS IN PERCOLATION THEORY
    STAUFFER, D
    JOURNAL OF STATISTICAL PHYSICS, 1978, 18 (02) : 125 - 136
  • [38] CRITICAL-BEHAVIOR OF THE SITE PERCOLATION MODEL ON THE SQUARE LATTICE IN A LXM GEOMETRY - MONTE-CARLO AND FINITE-SIZE SCALING STUDY
    MONETTI, RA
    ALBANO, EV
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1991, 82 (01): : 129 - 134
  • [39] Finite-size scaling theory for explosive percolation transitions
    Cho, Y. S.
    Kim, S. -W.
    Noh, J. D.
    Kahng, B.
    Kim, D.
    PHYSICAL REVIEW E, 2010, 82 (04):
  • [40] Solution of the explosive percolation quest: Scaling functions and critical exponents
    da Costa, R. A.
    Dorogovtsev, S. N.
    Goltsev, A. V.
    Mendes, J. F. F.
    PHYSICAL REVIEW E, 2014, 90 (02):