Improved shrinkage estimators in zero-inflated negative binomial regression model

被引:4
|
作者
Zandi, Zahra [1 ]
Bevrani, Hossein [1 ]
Belaghi, Reza Arabi [1 ]
机构
[1] Univ Tabriz, Dept Stat, Tabriz, Iran
来源
关键词
Monte Carlo simulation; overdispersion; shrinkage estimators; zero-inflated negative binomial regression; PRETEST;
D O I
10.15672/hujms.911424
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Zero-inflated negative binomial model is an appropriate choice to model count response variables with excessive zeros and overdispersion simultaneously. This paper addressed parameter estimation in the zero-inflated negative binomial model when there are many predictors, so that some of them are inactive and have not influence on the response variable. We proposed parameter estimation based on the linear shrinkage, pretest, shrinkage pretest, Stein-type, and positive Stein-type estimators. We obtained the asymptotic distributional biases and risks of the suggested estimators theoretically. We also conducted a Monte Carlo simulation study to compare the performance of each estimator with the unrestricted estimator in terms of simulated relative efficiency. Based on the results, the performances of the proposed estimators were better than that of the unrestricted estimator. The suggested estimators were applied to the wildlife fish data to appraise their performance.
引用
收藏
页码:1855 / 1876
页数:22
相关论文
共 50 条
  • [21] Marginalized zero-inflated negative binomial regression with application to dental caries
    Preisser, John S.
    Das, Kalyan
    Long, D. Leann
    Divaris, Kimon
    STATISTICS IN MEDICINE, 2016, 35 (10) : 1722 - 1735
  • [22] Using shrinkage strategies to estimate fixed effects in zero-inflated negative binomial mixed model
    Zandi, Zahra
    Bevrani, Hossein
    Arabi Belaghi, Reza
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (07) : 3201 - 3222
  • [23] Some ridge regression estimators for the zero-inflated Poisson model
    Kibria, B. M. Golam
    Mansson, Kristofer
    Shukur, Ghazi
    JOURNAL OF APPLIED STATISTICS, 2013, 40 (04) : 721 - 735
  • [24] Robust inference in the multilevel zero-inflated negative binomial model
    Zandkarimi, Eghbal
    Moghimbeigi, Abbas
    Mahjub, Hossein
    Majdzadeh, Reza
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (02) : 287 - 305
  • [25] COMPARING POISSON REGRESSION VIA NEGATIVE BINOMIAL REGRESSION FOR MODELING ZERO-INFLATED DATA
    Neamah, Mandi Wahhab
    Albasril, Enas Abid Alhafidh Mohamed
    Raheem, Saif Hosam
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 (01): : 365 - 373
  • [26] The Zero-Inflated Negative Binomial Semiparametric Regression Model: Application to Number of Failing Grades Data
    Aráujo E.G.
    Vasconcelos J.C.S.
    dos Santos D.P.
    Ortega E.M.M.
    de Souza D.
    Zanetoni J.P.F.
    Annals of Data Science, 2023, 10 (04) : 991 - 1006
  • [27] Factors Influencing Adolescent Generalized Anxiety Disorder A Zero-Inflated Negative Binomial Regression Model
    Kang, Kyung Im
    Kang, Chan Mi
    JOURNAL OF PSYCHOSOCIAL NURSING AND MENTAL HEALTH SERVICES, 2024, 62 (06) : 46 - 55
  • [28] A framework of zero-inflated bayesian negative binomial regression models for spatiotemporal data
    He, Qing
    Huang, Hsin-Hsiung
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2024, 229
  • [29] POISSON AND NEGATIVE BINOMIAL REGRESSION MODELS FOR ZERO-INFLATED DATA: AN EXPERIMENTAL STUDY
    Yildirim, Gizem
    Kaciranlar, Selahattin
    Yildirim, Hasan
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (02): : 601 - 615
  • [30] Parameter Estimation on Zero-Inflated Negative Binomial Regression with Right Truncated Data
    Saffari, Seyed Ehsan
    Adnan, Robiah
    SAINS MALAYSIANA, 2012, 41 (11): : 1483 - 1487