Finite commutative rings with higher genus unit graphs

被引:17
|
作者
Su, Huadong [1 ,2 ]
Noguchi, Kenta [3 ]
Zhou, Yiqiang [1 ]
机构
[1] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
[2] Guangxi Teachers Educ Univ, Sch Math & Sci, Nanning 530023, Guangxi, Peoples R China
[3] Keio Univ, Dept Math, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Unit graph; complete graph; complete bipartite graph; genus; finite commutative ring; ZERO-DIVISOR GRAPHS; PLANAR;
D O I
10.1142/S0219498815500024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a ring with identity. The unit graph of R, denoted by G(R), is a simple graph with vertex set R, and where two distinct vertices x and y are adjacent if and only if x + y is a unit in R. The genus of a simple graph G is the smallest nonnegative integer g such that G can be embedded into an orientable surface S-g. In this paper, we determine all isomorphism classes of finite commutative rings whose unit graphs have genus at most three.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Eigenvalues of zero-divisor graphs of finite commutative rings
    Moenius, Katja
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 54 (03) : 787 - 802
  • [22] Weak Zero-Divisor Graphs of Finite Commutative Rings
    Beaugris, L.
    Flores, M.
    Galing, C.
    Velasquez, A.
    Tejada, E.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2024, 15 (01): : 1 - 8
  • [23] On the genus of generalized unit and unitary Cayley graphs of a commutative ring
    T. Asir
    T. Tamizh Chelvam
    Acta Mathematica Hungarica, 2014, 142 : 444 - 458
  • [24] On the genus of generalized unit and unitary Cayley graphs of a commutative ring
    Asir, T.
    Chelvam, T. Tamizh
    ACTA MATHEMATICA HUNGARICA, 2014, 142 (02) : 444 - 458
  • [25] ON FINITE GENERATION OF UNIT GROUPS OF COMMUTATIVE GROUP-RINGS
    KARPILOVSKY, G
    ARCHIV DER MATHEMATIK, 1983, 40 (06) : 503 - 508
  • [26] ON COMPRESSED ZERO-DIVISOR GRAPHS OF FINITE COMMUTATIVE LOCAL RINGS
    Zhuravlev, E., V
    Filina, O. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2021, 18 (02): : 1531 - 1555
  • [27] On vertex connectivity of zero-divisor graphs of finite commutative rings
    Chattopadhyay, Sriparna
    Patra, Kamal Lochan
    Sahoo, Binod Kumar
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (04) : 955 - 969
  • [28] CUT VERTICES IN ZERO-DIVISOR GRAPHS OF FINITE COMMUTATIVE RINGS
    Axtell, M.
    Baeth, N.
    Stickles, J.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (06) : 2179 - 2188
  • [29] On the Non-Zero Divisor Graphs of Some Finite Commutative Rings
    Zai, N. A. F. O.
    Sarmin, N. H.
    Khasraw, S. M. S.
    Gambo, I.
    Zaid, N.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (02): : 105 - 112
  • [30] On the Nonorientable Genus of the Generalized Unit and Unitary Cayley Graphs of a Commutative Ring
    Khorsandi, Mahdi Reza
    Musawi, Seyed Reza
    ALGEBRA COLLOQUIUM, 2022, 29 (01) : 167 - 180