Finite commutative rings with higher genus unit graphs

被引:17
|
作者
Su, Huadong [1 ,2 ]
Noguchi, Kenta [3 ]
Zhou, Yiqiang [1 ]
机构
[1] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
[2] Guangxi Teachers Educ Univ, Sch Math & Sci, Nanning 530023, Guangxi, Peoples R China
[3] Keio Univ, Dept Math, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Unit graph; complete graph; complete bipartite graph; genus; finite commutative ring; ZERO-DIVISOR GRAPHS; PLANAR;
D O I
10.1142/S0219498815500024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a ring with identity. The unit graph of R, denoted by G(R), is a simple graph with vertex set R, and where two distinct vertices x and y are adjacent if and only if x + y is a unit in R. The genus of a simple graph G is the smallest nonnegative integer g such that G can be embedded into an orientable surface S-g. In this paper, we determine all isomorphism classes of finite commutative rings whose unit graphs have genus at most three.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Genus two nilpotent graphs of finite commutative rings
    Kalaimurugan, G.
    Vignesh, P.
    Chelvam, T. Tamizh
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (06)
  • [2] FINITE COMMUTATIVE RINGS WHOSE UNITARY CAYLEY GRAPHS HAVE POSITIVE GENUS
    Su, Huadong
    Zhou, Yiqiang
    JOURNAL OF COMMUTATIVE ALGEBRA, 2018, 10 (02) : 275 - 293
  • [3] Finite commutative rings whose line graphs of comaximal graphs have genus at most two
    Su, Huadong
    Huang, Chunhong
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 53 (04): : 1075 - 1084
  • [4] Commutative rings with genus two annihilator graphs
    Selvakumar, K.
    Subajini, M.
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (01) : 28 - 37
  • [5] Semi Unit Graphs of Commutative Semi Rings
    Khan, Yaqoub
    Aslam, M.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (03): : 519 - 530
  • [6] Perfect unit graphs of commutative Artinian rings
    S. M. Saadat Mirghadim
    R. Nikandish
    M. J. Nikmehr
    Afrika Matematika, 2021, 32 : 891 - 896
  • [7] Perfect unit graphs of commutative Artinian rings
    Mirghadim, S. M. Saadat
    Nikandish, R.
    Nikmehr, M. J.
    AFRIKA MATEMATIKA, 2021, 32 (5-6) : 891 - 896
  • [8] Symplectic graphs over finite commutative rings
    Meemark, Yotsanan
    Puirod, Thammanoon
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 41 : 298 - 307
  • [9] The Square Mapping Graphs of Finite Commutative Rings
    Wei, Yangjiang
    Tang, Gaohua
    Su, Huadong
    ALGEBRA COLLOQUIUM, 2012, 19 (03) : 569 - 580
  • [10] Subset Perfect Codes of Finite Commutative Rings Over Induced Subgraphs of Unit Graphs
    Mudaber, M. H.
    Sarmin, N. H.
    Gambo, I
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (04): : 783 - 791