LEIBNIZ ALGEBRAS WITH INVARIANT BILINEAR FORMS AND RELATED LIE ALGEBRAS
被引:6
|
作者:
Benayadi, Said
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lorraine, Lab IECL, CNRS, UMR 7502, Ile Du Saulcy, FranceUniv Lorraine, Lab IECL, CNRS, UMR 7502, Ile Du Saulcy, France
Benayadi, Said
[1
]
Hidri, Samiha
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lorraine, Lab IECL, CNRS, UMR 7502, Ile Du Saulcy, France
Fac Sci, Dept Math, Sfax BP, TunisiaUniv Lorraine, Lab IECL, CNRS, UMR 7502, Ile Du Saulcy, France
Hidri, Samiha
[1
,2
]
机构:
[1] Univ Lorraine, Lab IECL, CNRS, UMR 7502, Ile Du Saulcy, France
Double extension;
Left (resp Right) invariant bilinear form;
Leibniz algebra;
Levi-Civita product;
Pseudo-metric on Lie algebra;
T*-extension;
SUPERALGEBRAS;
D O I:
10.1080/00927872.2015.1085550
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In ([11]), we have studied quadratic Leibniz algebras that are Leibniz algebras endowed with symmetric, nondegenerate, and associative (or invariant) bilinear forms. The nonanticommutativity of the Leibniz product gives rise to other types of invariance for a bilinear form defined on a Leibniz algebra: the left invariance, the right invariance. In this article, we study the structure of Leibniz algebras endowed with nondegenerate, symmetric, and left (resp. right) invariant bilinear forms. In particular, the existence of such a bilinear form on a Leibniz algebra ? gives rise to a new algebra structureon the underlying vector space ?. In this article, we study this new algebra, and we give information on the structure of this type of algebras by using some extensions introduced in [11]. In particular, we improve the results obtained in [22].