Harmonization of Quantitative Parenchymal Enhancement in T1-Weighted Breast MRI

被引:5
|
作者
van Der Velden, Bas H. M. [1 ]
van Rijssel, Michael J. [1 ]
Lena, Beatrice [1 ]
Philippens, Marielle E. P. [2 ]
Loo, Claudette E. [3 ]
Ragusi, Max A. A. [1 ]
Elias, Sjoerd G. [4 ]
Sutton, Elizabeth J. [5 ]
Morris, Elizabeth A. [5 ]
Bartels, Lambertus W. [1 ]
Gilhuijs, Kenneth G. A. [1 ]
机构
[1] Univ Utrecht, Univ Med Ctr Utrecht, Image Sci Inst, Utrecht, Netherlands
[2] Univ Utrecht, Univ Med Ctr Utrecht, Dept Radiotherapy, Utrecht, Netherlands
[3] Antoni van Leeuwenhoek Hosp, Netherlands Canc Inst, Dept Radiol, Amsterdam, Netherlands
[4] Univ Utrecht, Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
[5] Mem Sloan Kettering Canc Ctr, Dept Radiol, 1275 York Ave, New York, NY 10021 USA
关键词
CARCINOMA IN-SITU; INTEROBSERVER VARIABILITY; NEOADJUVANT CHEMOTHERAPY; CONTRAST-MEDIA; ASSOCIATION; RECURRENCE; PREDICTS; IMAGES; RISK;
D O I
10.1002/jmri.27244
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background Differences in imaging parameters influence computer-extracted parenchymal enhancement measures from breast MRI. Purpose To investigate the effect of differences in dynamic contrast-enhanced MRI acquisition parameter settings on quantitative parenchymal enhancement of the breast, and to evaluate harmonization of contrast-enhancement values with respect to flip angle and repetition time. Study Type Retrospective. Phantom/Populations We modeled parenchymal enhancement using simulations, a phantom, and two cohorts (N = 398 and N = 302) from independent cancer centers. Sequence Field/Strength 1.5T dynamic contrast-enhanced T-1-weighted spoiled gradient echo MRI. Vendors: Philips, Siemens, General Electric Medical Systems. Assessment We assessed harmonization of parenchymal enhancement in simulations and phantom by varying the MR parameters that influence the amount of T-1-weighting: flip angle (8 degrees-25 degrees) and repetition time (4-12 msec). We calculated the median and interquartile range (IQR) of the enhancement values before and after harmonization. In vivo, we assessed overlap of quantitative parenchymal enhancement in the cohorts before and after harmonization using kernel density estimations. Cohort 1 was scanned with flip angle 20 degrees and repetition time 8 msec; cohort 2 with flip angle 10 degrees and repetition time 6 msec. Statistical Tests Paired Wilcoxon signed-rank-test of bootstrapped kernel density estimations. Results Before harmonization, simulated enhancement values had a median (IQR) of 0.46 (0.34-0.49). After harmonization, the IQR was reduced: median (IQR): 0.44 (0.44-0.45). In the phantom, the IQR also decreased, median (IQR): 0.96 (0.59-1.22) before harmonization, 0.96 (0.91-1.02) after harmonization. Harmonization yielded significantly (P < 0.001) better overlap in parenchymal enhancement between the cohorts: median (IQR) was 0.46 (0.37-0.58) for cohort 1 vs. 0.37 (0.30-0.44) for cohort 2 before harmonization (57% overlap); and 0.35 (0.28-0.43) vs. .0.37 (0.30-0.44) after harmonization (85% overlap). Data Conclusion The proposed practical harmonization method enables an accurate comparison between patients scanned with differences in imaging parameters. Level of Evidence 3 Technical Efficacy Stage 4
引用
收藏
页码:1374 / 1382
页数:9
相关论文
共 50 条
  • [1] Editorial for "Harmonization of Quantitative Parenchymal Enhancement in T1-Weighted Breast MRI"
    Grimm, Lars J.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 52 (05) : 1383 - 1384
  • [2] On the Fallacy of Quantitative Segmentation for T1-Weighted MRI
    Plassard, Andrew J.
    Harrigan, Robert L.
    Newton, Allen T.
    Rane, Swati
    Pallavaram, Srivatsan
    D'Haese, Pierre F.
    Dawant, Benoit M.
    Claassen, Daniel O.
    Landman, Bennett A.
    MEDICAL IMAGING 2016: IMAGE PROCESSING, 2016, 9784
  • [3] Parenchymal enhancement on T1-weighted MRI predicts subsequent hemorrhagic transformation in acute ischemic stroke.
    Lee, Kyung-Yul
    Latour, Lawrence L.
    Merino, Jose G.
    Warach, Steven
    STROKE, 2008, 39 (02) : 588 - 588
  • [4] Automatic detection of contrast enhancement in T1-weighted brain MRI of human adults
    Milchenko, Mikhail
    LaMontagne, Pamela
    Marcus, Daniel
    MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [5] Optimization of iron-loaded nanoparticles for T1-weighted MRI contrast enhancement
    Ditri, Treffly
    Li, Yiwen
    Wang, Zhao
    Huang, Yuran
    Xie, Yijun
    Botta, Mauro
    Rinehart, Jeffrey
    Gianneschi, Nathan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [6] Delayed ischemic hyperintensity of T1-weighted MRI
    Fujioka, M
    Hiramatsu, KI
    Sakaki, T
    Taoka, T
    Sakaguchi, S
    Matsuo, Y
    STROKE, 2000, 31 (03) : 797 - 798
  • [7] Feasibility study on the clinical application of CT-based synthetic brain T1-weighted MRI: comparison with conventional T1-weighted MRI
    Li, Zhaotong
    Cao, Gan
    Zhang, Li
    Yuan, Jichun
    Li, Sha
    Zhang, Zeru
    Wu, Fengliang
    Gao, Song
    Xia, Jun
    EUROPEAN RADIOLOGY, 2024, 34 (09) : 5783 - 5799
  • [8] Longitudinal registration of T1-weighted breast MRI: A registration algorithm (FLIRE) and clinical application
    Tong, Michelle W.
    Yu, Hon J.
    Andreassen, Maren M. Sjaastad
    Loubrie, Stephane
    Rodriguez-Soto, Ana E.
    Seibert, Tyler M.
    Rakow-Penner, Rebecca
    Dale, Anders M.
    MAGNETIC RESONANCE IMAGING, 2024, 113
  • [9] Combined Use of T2-Weighted MRI and T1-Weighted Dynamic Contrast-Enhanced MRI in the Automated Analysis of Breast Lesions
    Bhooshan, Neha
    Giger, Maryellen
    Lan, Li
    Li, Hui
    Marquez, Angelica
    Shimauchi, Akiko
    Newstead, Gillian M.
    MAGNETIC RESONANCE IN MEDICINE, 2011, 66 (02) : 555 - 563
  • [10] Gadobutrol enhances T1-weighted MRI of nerve cells
    Watanabe, Takashi
    Frahm, Jens
    TOXICOLOGY LETTERS, 2019, 308 : 17 - 23