Statistical approach of weakly nonlinear ablative Rayleigh-Taylor instability

被引:22
|
作者
Garnier, J
Masse, L
机构
[1] Univ Paris 07, Lab Probabil & Modeles Aleatoires, F-75251 Paris, France
[2] Univ Paris 07, Lab Jacques Louis Lions, F-75251 Paris, France
[3] Commiss Energie Atom, Direct Applicat Mil, F-91680 Bruyeres Le Chatel, France
关键词
D O I
10.1063/1.1927542
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A weakly nonlinear model is proposed for the Rayleigh-Taylor instability in presence of ablation and thermal transport. The nonlinear effects for a single-mode disturbance are computed, included the nonlinear correction to the exponential growth of the fundamental modulation. Mode coupling in the spectrum of a multimode disturbance is thoroughly analyzed by a statistical approach. The exponential growth of the linear regime is shown to be reduced by the nonlinear mode coupling. The saturation amplitude is around 0.1 lambda for long wavelengths, but higher for short instable wavelengths in the ablative regime. (C) 2005 American Institute of Physics.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [41] Ablative stabilization of short wavelength Rayleigh-Taylor instability
    Atzeni, S
    NUCLEAR FUSION, 1996, 36 (01) : 69 - 74
  • [42] NONLINEAR RAYLEIGH-TAYLOR INSTABILITY IN HYDROMAGNETICS
    KALRA, GL
    KATHURIA, SN
    JOURNAL OF PLASMA PHYSICS, 1976, 15 (APR) : 239 - 244
  • [43] Numerical study on the laser ablative Rayleigh-Taylor instability
    Li, Zhiyuan
    Wang, Lifeng
    Wu, Junfeng
    Ye, Wenhua
    ACTA MECHANICA SINICA, 2020, 36 (04) : 789 - 796
  • [44] Magnetized ablative Rayleigh-Taylor instability in three dimensions
    Walsh, C. A.
    PHYSICAL REVIEW E, 2022, 105 (02)
  • [45] Weakly nonlinear incompressible Rayleigh-Taylor instability growth at cylindrically convergent interfaces
    Wang, L. F.
    Wu, J. F.
    Ye, W. H.
    Zhang, W. Y.
    He, X. T.
    PHYSICS OF PLASMAS, 2013, 20 (04)
  • [46] Interface coupling effects of weakly nonlinear Rayleigh-Taylor instability with double interfaces
    Li, Zhiyuan
    Wang, Lifeng
    Wu, Junfeng
    Ye, Wenhua
    CHINESE PHYSICS B, 2020, 29 (03)
  • [47] Interface Width Effect on the Weakly Nonlinear Rayleigh-Taylor Instability in Spherical Geometry
    Yang, Yun-Peng
    Zhang, Jing
    Li, Zhi-Yuan
    Wang, Li-Feng
    Wu, Jun-Feng
    Ye, Wun-Hua
    He, Xian-Tu
    CHINESE PHYSICS LETTERS, 2020, 37 (07)
  • [48] The three-dimensional weakly nonlinear Rayleigh-Taylor instability in spherical geometry
    Zhang, J.
    Wang, L. F.
    Wu, J. F.
    Ye, W. H.
    Zou, S. Y.
    Ding, Y. K.
    Zhang, W. Y.
    He, X. T.
    PHYSICS OF PLASMAS, 2020, 27 (02)
  • [49] Coupling between interface and velocity perturbations in the weakly nonlinear Rayleigh-Taylor instability
    Wang, L. F.
    Wu, J. F.
    Fan, Z. F.
    Ye, W. H.
    He, X. T.
    Zhang, W. Y.
    Dai, Z. S.
    Gu, J. F.
    Xue, C.
    PHYSICS OF PLASMAS, 2012, 19 (11)
  • [50] Weakly nonlinear Rayleigh-Taylor instability of a finite-thickness fluid layer
    Wang, L. F.
    Guo, H. Y.
    Wu, J. F.
    Ye, W. H.
    Liu, Jie
    Zhang, W. Y.
    He, X. T.
    PHYSICS OF PLASMAS, 2014, 21 (12)