Polypyridyl complexes as electron transporting materials for inverted bulk heterojunction solar cells: the metal center effect

被引:8
|
作者
Balgley, Renata [1 ]
Drees, Martin [2 ]
Bendikov, Tatyana [3 ]
Lahav, Michal [1 ]
Facchetti, Antonio [2 ,4 ,5 ]
van der Boom, Milko E. [1 ]
机构
[1] Weizmann Inst Sci, Dept Organ Chem, IL-7610001 Rehovot, Israel
[2] Polyera Corp, 8045 Lamon Ave, Skokie, IL 60077 USA
[3] Weizmann Inst Sci, Dept Chem Res Support, IL-7610001 Rehovot, Israel
[4] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA
[5] Northwestern Univ, Mat Res Ctr, Evanston, IL 60208 USA
关键词
HIGH-EFFICIENCY; MOLECULE;
D O I
10.1039/c6tc00578k
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The fundamental science behind the design of organic photovoltaic (OPV) cells lies in the formation of energy level gradients for efficient charge separation and collection. Tuning the energy levels at the device electrodes by the right choice of the components is a key requirement for achieving enhanced characteristics. Here we demonstrate control and optimization of OPV cell performance by using a set of polypyridyl complexes based on iron, ruthenium, and osmium centers with tunable frontier orbital energies as interlayers for inverted bulk heterojunction solar cells. We found that changing the metal center of isostructural transition-metal complexes results in evident shifts of the HOMO and LUMO energy levels and the work functions of the corresponding interlayers, which has a prominent effect on the device performance. We generalize our approach by combining the interlayers with different sets of photoactive materials to test the electron transporting as well as the hole blocking characteristics of the interlayers.
引用
收藏
页码:4634 / 4639
页数:6
相关论文
共 50 条
  • [41] BODIPY derivatives as donor materials for bulk heterojunction solar cells
    Rousseau, Theodulf
    Cravino, Antonio
    Bura, Thomas
    Ulrich, Gilles
    Ziessel, Raymond
    Roncali, Jean
    CHEMICAL COMMUNICATIONS, 2009, (13) : 1673 - 1675
  • [42] Bulk heterojunction solar cells with NiO hole transporting layer based on AZO anode
    Sun, Nanhai
    Fang, Guojia
    Qin, Pingli
    Zheng, Qiao
    Wang, Mingjun
    Fan, Xi
    Cheng, Fei
    Wan, Jiawei
    Zhao, Xingzhong
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (12) : 2328 - 2331
  • [43] Dithienogermole As a Fused Electron Donor in Bulk Heterojunction Solar Cells
    Amb, Chad M.
    Chen, Song
    Graham, Kenneth R.
    Subbiah, Jegadesan
    Small, Cephas E.
    So, Franky
    Reynolds, John R.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (26) : 10062 - 10065
  • [44] The effect of small-molecule electron transporting materials on the performance of polymer solar cells
    Du, Hailiang
    Deng, Zhenbo
    Lue, Zhaoyue
    Chen, Zheng
    Zou, Ye
    Yin, Yuehong
    Xu, Denghui
    Wang, Yongsheng
    THIN SOLID FILMS, 2011, 519 (13) : 4357 - 4360
  • [45] Effect of nanophase morphology on bulk heterojunction solar cells
    Yu, Luping
    Liang, Yongye
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239
  • [46] Hole/Electron Transporting Materials for Nonfullerene Organic Solar Cells
    Xu, Xiaopeng
    Peng, Qiang
    CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (25)
  • [47] Effect of Contacts in Organic Bulk Heterojunction Solar Cells
    Sandberg, Oskar J.
    Nyman, Mathias
    Osterbacka, Ronald
    PHYSICAL REVIEW APPLIED, 2014, 1 (02):
  • [48] Phosphorescent molecular metal complexes in heterojunction solar cells
    Wright, Iain A.
    POLYHEDRON, 2018, 140 : 84 - 98
  • [49] Perovskite Solar Cells with ZnO Electron-Transporting Materials
    Zhang, Peng
    Wu, Jiang
    Zhang, Ting
    Wang, Yafei
    Liu, Detao
    Chen, Hao
    Ji, Long
    Liu, Chunhua
    Ahmad, Waseem
    Chen, Zhi David
    Li, Shibin
    ADVANCED MATERIALS, 2018, 30 (03)
  • [50] Influence of Trap Depth on Charge Transport in Inverted Bulk Heterojunction Solar Cells employing ZnO as electron transport layer
    Elumalai, Naveen Kumar
    Vijila, Chellappan
    Sridhar, Arthi
    Ramakrishna, Seeram
    PROCEEDINGS OF THE 2013 IEEE 5TH INTERNATIONAL NANOELECTRONICS CONFERENCE (INEC), 2013, : 346 - 349