Markov-modulated Marked Poisson Processes for Check-in Data

被引:0
|
作者
Pan, Jiangwei [1 ]
Rao, Vinayak [2 ]
Agarwal, Pankaj K. [1 ]
Gelfand, Alan E. [3 ]
机构
[1] Duke Univ, Dept Comp Sci, Durham, NC 27706 USA
[2] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
[3] Duke Univ, Dept Stat Sci, Durham, NC 27706 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop continuous-time probabilistic models to study trajectory data consisting of times and locations of user 'check-ins'. We model the data as realizations of a marked point process, with intensity and mark-distribution modulated by a latent Markov jump process (MJP). We also include user-heterogeneity in our model by assigning each user a vector of 'preferred locations'. Our model extends latent Dirichlet allocation by dropping the bag-of-words assumption and operating in continuous time. We show how an appropriate choice of priors allows efficient posterior inference. Our experiments demonstrate the usefulness of our approach by comparing with various baselines on a variety of tasks.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Markov-Modulated Nonhomogeneous Poisson Processes for Modeling Detections in Surveys of Marine Mammal Abundance
    Langrock, Roland
    Borchers, David L.
    Skaug, Hans J.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (503) : 840 - 851
  • [22] MARKOV-MODULATED ORNSTEIN-UHLENBECK PROCESSES
    Huang, G.
    Jansen, H. M.
    Mandjes, M.
    Spreij, P.
    De Turck, K.
    ADVANCES IN APPLIED PROBABILITY, 2016, 48 (01) : 235 - 254
  • [23] Statistical traffic envelopes for Markov-Modulated Poisson packet sources
    Giacomazzi, Paolo
    GLOBECOM 2007: 2007 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-11, 2007, : 2628 - 2633
  • [24] Bayesian inference for the Markov-modulated Poisson process with an outcome process
    Luo, Yu
    Sherlock, Chris
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2025,
  • [25] Analysis of Single-Molecule Fluorescence Spectroscopic Data with a Markov-Modulated Poisson Process
    Jager, Mark
    Kiel, Alexander
    Herten, Dirk-Peter
    Hamprecht, Fred A.
    CHEMPHYSCHEM, 2009, 10 (14) : 2486 - 2495
  • [26] ASYMPTOTIC THEOREMS FOR THE EFFECT OF SUPERPOSITIONS OF MARKOV-MODULATED POISSON PROCESSES ON SINGLE-SERVER QUEUES
    BURMAN, DY
    SMITH, DR
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1984, 16 (01) : 25 - 25
  • [27] Learning marked Markov modulated Poisson processes for online predictive analysis of attack scenarios
    Carnevali, Laura
    Santoni, Francesco
    Vicario, Enrico
    2019 IEEE 30TH INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING (ISSRE), 2019, : 195 - 205
  • [28] Markov modulated poisson processes for clustered line transect data
    Skaug, Hans J.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2006, 13 (02) : 199 - 211
  • [29] Markov Modulated Poisson Processes for Clustered Line Transect Data
    Hans J. Skaug
    Environmental and Ecological Statistics, 2006, 13 : 199 - 211
  • [30] Modelling and understanding count processes through a Markov-modulated non-homogeneous Poisson process framework
    Ayanzi, Benjamin
    Taylor, Greg
    Wong, Bernard
    Xian, Alan
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 290 (01) : 177 - 195