RECOVERY IN QUANTUM ERROR CORRECTION FOR GENERAL NOISE WITHOUT MEASUREMENT

被引:0
|
作者
Li, Chi-Kwong [2 ,3 ]
Nakahara, Mikio [4 ,5 ]
Poon, Yiu-Tung [6 ]
Sze, Nung-Sing [1 ]
Tomita, Hiroyuki [4 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[3] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, Peoples R China
[4] Kinki Univ, Res Ctr Quantum Comp, Interdisciplinary Grad Sch Sci & Engn, Higashiosaka, Osaka 5778502, Japan
[5] Kinki Univ, Dept Phys, Higashiosaka, Osaka 5778502, Japan
[6] Iowa State Univ, Dept Math, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
quantum error correction; operator quantum error correction; higher rank numerical range; mixed unitary channel;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is known that one can do quantum error correction without syndrome measurement, which is often done in operator quantum error correction (OQEC). However, the physical realization could be challenging, especially when the recovery process involves high-rank projection operators and a superoperator. We use operator theory to improve OQEC so that the implementation can always be done by unitary gates followed by a partial trace operation. Examples are given to show that our error correction scheme outperforms the existing ones in various scenarios.
引用
收藏
页码:149 / 158
页数:10
相关论文
共 50 条
  • [41] Information-theoretic approach to quantum error correction and reversible measurement
    Nielson, M.A.
    Caves, C.M.
    Schumacher, B.
    Barnum, H.
    Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 1998, 454 (1969): : 277 - 304
  • [42] Measurement-based estimator scheme for continuous quantum error correction
    Borah, Sangkha
    Sarma, Bijita
    Kewming, Michael
    Quijandria, Fernando
    Milburn, Gerard J.
    Twamley, Jason
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [43] Information-theoretic approach to quantum error correction and reversible measurement
    Nielsen, MA
    Caves, CM
    Schumacher, B
    Barnum, H
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1969): : 277 - 304
  • [44] Quantum error correction of continuous-variable states against Gaussian noise
    Ralph, T. C.
    PHYSICAL REVIEW A, 2011, 84 (02):
  • [45] High-threshold topological quantum error correction against biased noise
    Stephens, Ashley M.
    Munro, William J.
    Nemoto, Kae
    PHYSICAL REVIEW A, 2013, 88 (06):
  • [46] Quantum error correction with an Ising machine under circuit-level noise
    Fujisaki, Jun
    Maruyama, Kazunori
    Oshima, Hirotaka
    Sato, Shintaro
    Sakashita, Tatsuya
    Takeuchi, Yusaku
    Fujii, Keisuke
    PHYSICAL REVIEW RESEARCH, 2023, 5 (04):
  • [47] Quantum Error Correction with Quantum Autoencoders
    Locher, David F.
    Cardarelli, Lorenzo
    Mueller, Markus
    QUANTUM, 2023, 7
  • [48] Quantum error correction for quantum memories
    Terhal, Barbara M.
    REVIEWS OF MODERN PHYSICS, 2015, 87 (02) : 307 - 346
  • [49] Quantum error correction and quantum computation
    Alber, G
    Delgado, A
    Mussinger, M
    LASER PHYSICS, 2002, 12 (04) : 742 - 750
  • [50] Continuous quantum error correction
    Sarovar, M
    Milburn, GJ
    FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS III, 2005, 5846 : 158 - 166