RECOVERY IN QUANTUM ERROR CORRECTION FOR GENERAL NOISE WITHOUT MEASUREMENT

被引:0
|
作者
Li, Chi-Kwong [2 ,3 ]
Nakahara, Mikio [4 ,5 ]
Poon, Yiu-Tung [6 ]
Sze, Nung-Sing [1 ]
Tomita, Hiroyuki [4 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[3] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, Peoples R China
[4] Kinki Univ, Res Ctr Quantum Comp, Interdisciplinary Grad Sch Sci & Engn, Higashiosaka, Osaka 5778502, Japan
[5] Kinki Univ, Dept Phys, Higashiosaka, Osaka 5778502, Japan
[6] Iowa State Univ, Dept Math, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
quantum error correction; operator quantum error correction; higher rank numerical range; mixed unitary channel;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is known that one can do quantum error correction without syndrome measurement, which is often done in operator quantum error correction (OQEC). However, the physical realization could be challenging, especially when the recovery process involves high-rank projection operators and a superoperator. We use operator theory to improve OQEC so that the implementation can always be done by unitary gates followed by a partial trace operation. Examples are given to show that our error correction scheme outperforms the existing ones in various scenarios.
引用
收藏
页码:149 / 158
页数:10
相关论文
共 50 条
  • [1] Theory of quantum error correction for general noise
    Knill, E
    Laflamme, R
    Viola, L
    PHYSICAL REVIEW LETTERS, 2000, 84 (11) : 2525 - 2528
  • [2] Noise-adapted recovery circuits for quantum error correction
    Biswas, Debjyoti
    Vaidya, Gaurav M.
    Mandayam, Prabha
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [3] Achieving the Heisenberg limit under general Markovian noise using quantum error correction without ancilla
    Peng, Yi
    Fan, Heng
    QUANTUM INFORMATION PROCESSING, 2020, 19 (08)
  • [4] Achieving the Heisenberg limit under general Markovian noise using quantum error correction without ancilla
    Yi Peng
    Heng Fan
    Quantum Information Processing, 2020, 19
  • [5] Quantum Error Correction Decoheres Noise
    Beale, Stefanie J.
    Wallman, Joel J.
    Gutierrez, Mauricio
    Brown, Kenneth R.
    Laflamme, Raymond
    PHYSICAL REVIEW LETTERS, 2018, 121 (19)
  • [6] Quantum error correction in spatially correlated quantum noise
    Klesse, R
    Frank, S
    PHYSICAL REVIEW LETTERS, 2005, 95 (23)
  • [7] Effects of noise on quantum error correction algorithms
    Barenco, A
    Brun, TA
    Schack, R
    Spiller, TP
    PHYSICAL REVIEW A, 1997, 56 (02): : 1177 - 1188
  • [8] Quantum error correction against correlated noise
    Clemens, James P.
    Siddiqui, Shabnam
    Gea-Banacloche, Julio
    Physical Review A - Atomic, Molecular, and Optical Physics, 2004, 69 (06): : 062313 - 1
  • [9] Quantum error correction for various forms of noise
    Gea-Banacloche, J
    Clemens, JP
    FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS II, 2004, 5468 : 252 - 261
  • [10] Approximate Quantum Error Correction for Correlated Noise
    Ben-Aroya, Avraham
    Ta-Shma, Amnon
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (06) : 3982 - 3988