Super-resolution image reconstruction from a sequence of aliased imagery

被引:6
|
作者
Young, SS [1 ]
Driggers, RG [1 ]
机构
[1] Army Res Lab, Adelphi, MD 20783 USA
关键词
aliased imagery; error-energy reduction; sub-pixel shift estimation; super-resolution image reconstruction;
D O I
10.1117/12.603482
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper presents a super-resolution image reconstruction from a sequence of aliased imagery. The sub-pixel shifts (displacement) among the images are unknown due to uncontrolled natural jitter of the imager. A correlation method is utilized to estimate sub-pixel shifts between each low-resolution aliased image with respect to a reference image. An error-energy reduction algorithm is derived to reconstruct the high-resolution alias-free output image. The main feature of this proposed error-energy reduction algorithm is that we treat the spatial samples from low-resolution images that possess unknown and irregular (uncontrolled) sub-pixel shifts as a set of constraints to populate an over-sampled (sampled above the desired output bandwidth) processing array. The estimated sub-pixel locations of these samples and their values constitute a spatial domain constraint. Furthermore, the bandwidth of the alias-free image (or the sensor imposed bandwidth) is the criterion used as a spatial frequency domain constraint on the over-sampled processing array. The results of testing the proposed algorithm on the simulated low-resolution aliased images from real world nonaliased FLIR (Forward-Looking Infrared) images, real world aliased FLIR images and visible aliased images are provided.
引用
收藏
页码:114 / 124
页数:11
相关论文
共 50 条
  • [41] An Overview of Image Super-resolution Reconstruction Algorithm
    Niu, Xiaoming
    2018 11TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2018, : 16 - 18
  • [42] Overview of Research on Image Super-Resolution Reconstruction
    Yu Mengbei
    Wang Hongjuan
    Liu Mengyang
    Li Pei
    2021 IEEE INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SOFTWARE ENGINEERING (ICICSE 2021), 2021, : 131 - 135
  • [43] Super-Resolution Reconstruction of Radio Tomographic Image
    Sun, Cheng
    Gao, Fei
    Liu, Heng
    2016 IEEE 83RD VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING), 2016,
  • [44] Image reconstruction with improved super-resolution algorithm
    Chen, CY
    Kuo, YC
    Fuh, CS
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2004, 18 (08) : 1513 - 1527
  • [45] Order filters in super-resolution image reconstruction
    Trimeche, M
    Yrjänäinen, J
    IMAGE PROCESSING: ALGORITHMS AND SYSTEMS II, 2003, 5014 : 190 - 200
  • [46] Saliency adaptive super-resolution image reconstruction
    Liu, Zhenyu
    Tian, Jing
    Chen, Li
    Wang, Yongtao
    OPTICS COMMUNICATIONS, 2012, 285 (06) : 1039 - 1043
  • [47] IMAGE SUPER-RESOLUTION VIA MULTI-RESOLUTION IMAGE SEQUENCE
    Chen, Xiang-Ji
    Han, Guo-Qiang
    Li, Zhan
    Liao, Xiuxiu
    2013 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2013, : 178 - 183
  • [48] SUPER-RESOLUTION FROM UNREGISTERED ALIASED IMAGES WITH UNKNOWN SCALINGS AND SHIFTS
    Peng, Yigang
    Yang, Feng
    Dai, Qionghai
    Xu, Wenli
    Vetterli, Martin
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 857 - 860
  • [49] SUPER-RESOLUTION RECONSTRUCTION OF IMAGE BASED ON PRIOR IMAGE CONSTRAINT
    Tang Bin-Bing
    Wang Zheng-Ming
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2008, 27 (05) : 389 - 392
  • [50] Image super-resolution reconstruction based on implicit image functions
    Lin, Hai
    Yang, JunJie
    IET IMAGE PROCESSING, 2024, 18 (10) : 2690 - 2701